Robotic Simulation Software: How It Can Add Value to Manufacturers

The advent of next-generation technologies like Simulations, AR, VR, and AI continues to grow rapidly. With continuous evolution in their advancement and increasing accessibility, they can exponentially add value to manufacturers. Hence, influencing industries across the globe to adopt these technologies at an increasing rate. For example, artificial intelligence with immersive technologies like AR and VR swiftly transforms manufacturing processes and product development. But, on the other hand, robotic technology redefines the possibilities and opportunities in various fields and industries.

The increasing sophistication of robotic technology is visible due to giant leaps in the capabilities of current robotic systems. With technology evolving swiftly, the industry is also adopting newer technologies in its manufacturing and product development processes. One of these newer technologies the industry is moving towards is simulation technology.

With the dawn of Industry 4.0 upon us, industries undoubtedly need to advance towards digital transformation. In this advancement, simulation technology is a boon for manufacturers. Although simulation technology is not new due to its rapid evolution in recent years, it is expanding its horizon of possibilities and opportunities. Robotic technology is one of the unknown frontiers of simulation tech.

Read more: 12 Things to Consider When Exploring Offline Robot Programming Software Solutions

Simulation software has the power to enable rapid prototyping, testing, and development of product development processes and R&D technology. Computer simulation is one of the vital tools for industries like robotic development and manufacturing. With the crucial role of robots in the manufacturing industry, the development and advancement of robotic technology are significant for the whole manufacturing industry.

Why Simulation Softwares in Robot Development?

Robot research and development, along with its design and production, is very complex. It is not just because of the sophistication of the technologies in a robot. But also because of economic reasons and risks in robotic development. They also have to add value to the manufacturers as well.

Robots are usually expensive pieces of machinery. Industrial and manufacturing robots are costly due to the niche application following the niche research and development requirement. Moreover, even general robot design and development require massive resources, cost, time, and multidisciplinary skills. Furthermore, prototyping robots for testing, evaluation, and assessment need equally, if not more, resources, time, cost, and abilities. Add this with risks present in the real world, and robotic development truly becomes a huge undertaking.

Computer simulations for robotic development can solve all these problems. Computer simulations offer efficient and elegant solutions that are more cost-effective and less time-consuming. Any computer simulation software usually provides a 3D digital space to test and develop a product. Similarly, robot simulation software offers different environments and tools in a digital 3D area to test, run, research, evaluate and develop a robot.

Add Value to Manufacturers

Real robots in the real world consist of parts like motors, batteries, joints, arms, sensors, actuators, controllers, and other mechanical parts. Furthermore, robots also consist of networking, processing, and data handling components to analyze data and communicate. Apart from this, some robots also need to be smart and capable of making various decisions in real-time to add value to manufacturers. Consequently, due to these causes, robots in the real world are very complex and expensive. 

However, robotic simulation software provides all these tools, components, and parts in its digital space. Due to the high advancement of simulation software, today, simulation software can simulate all these parts and subsequently a fully functional robot that can run/operate in different conditions and environments. One just has to bring these parts and models together digitally. The simulation software also supports the design and development of these parts and models digitally. Hence, developing or putting together a robot in a simulation environment is very quickly relative to the real world.

Read more: Computer Simulation of Human Robots Collaboration in the Industries

Moreover, just like in the real world, robotic simulation software also allows for the testing and evaluation robots in different environments and conditions. Simulation software can simulate fluid and air dynamics, collisions, and many more physical, real-world phenomena with very accurate and modern physics that reflect real-world physics. All this happens similarly to the real world, except the simulations are fast and easy to develop and do not have to suffer huge risks and significant economic setbacks.

With computer simulations on hand, the risks and costs in association with robot development become redundant. It also ensures that the developers do not exhaust their time worrying about resources and cost but instead focus on the actual robot development. It also provides the developers with flexibility and space to develop the best robot for their requirements without compromising developmental risks and costs.

How they Add Value to Manufacturers

With the vast advantages of using simulation software in robotic research and development, manufacturers are beginning to realize the potential it carries. Furthermore, minimizing risk in robot development in manufacturing and factories also means developing robots with better design that suits the requirements to a far greater degree. As a result, companies or factories using robots in various product manufacturing processes can undoubtedly reap the benefits of better and cost-effective robotic solutions, which is possible due to robotic simulation software.

Proper simulation software can ensure the best systems for different applications and use cases. With rapid design and development in the card, even if a system is not up to the mark, companies can simply re-design it in the digital form with much lower costs and resources. In addition, with computing systems becoming cheaper and efficient, simulations can now help manufacturers build their robotic solutions to stay competitive in the market with new and better solutions.

There are numerous ways the robotic simulation software can add value to manufacturers, for example, cohesion with better designs, processes, and efficient investment.

With manufacturers expanding their product spectra to a wide range, robotic systems in use are not always general robots but tailored with specific needs and requirements in play. For instance, a car manufacturing company cannot automate the assembly line process without the same robots. Development of robots enters completion with niche use cases in mind. One robot installs engines while another robot paints the car; another robot detects flaws in the painting. Another installs wheels, another lifts machines before installation, and so on. Each different use case requires another robot.

Hence in this scenario, designing different robots for different use cases in the real world is very expensive as well as being time and resources consuming. However, creating robots for other use cases is much simpler, more accessible, faster, and cost-effective through simulation software. Consequently, robotic simulation software can also help manufacturers to customize and fine-tune robots according to their needs.  Moreover, such systems can undergo design and development to seamlessly fit into their existing facilities and systems quickly relative to traditional methods.

Automation also becomes much simpler with the capability of simulation software to test automation and smart technologies in a full-blown manner even before the final design is ready. Furthermore, simulation consisting of accurate and minute details add value to manufacturers, helping them configure their automation system so that the resultant robotic systems can meet their goals. However, manufacturers usually have to take significant risks for proof of design and automation process verification without simulation systems.

Due to all these advantages, simulation systems can return great results on the manufacturer’s investment. Furthermore, simulation software capable of self-diagnosis and automatic error reporting ensures that the finished designs and products are free of errors and potential flaws. It also ensures that the robotic simulation systems function with precision with known efficiencies in different environments and conditions. Thus, it helps manufacturers get maximum returns on their investment.

Moreover, the investment also becomes largely more safe and secure relative to the investment in traditional approaches. Furthermore, with the successful design and development of robots or systems meeting all requirements and needs beforehand, manufacturers can ensure further lucrative benefits and returns. Eventually, the end goal of manufacturers is to get returns from the end product. It largely depends upon the manufacturing process, which depends on the systems and procedures, including robotic systems used for manufacturing.

Hence, ultimately a successful result is a massive win for manufacturers. Robotic simulation software ensures that this result is successful and that the manufacturers get there with much lower costs, resources, time, and skills.

Add Value to Manufacturers

Conclusion

Industry 4.0 or the Fourth Industrial Revolution (FIR) is all about the digital transformation of enterprises. With Industry 4.0 approaching more closely than ever before, industries and manufacturers must keep up with advancements in technologies like simulation and artificial intelligence, AR, and VR. While it may seem that the transition to digital technology and simulations for product innovation, R&D, and robotic development is complex, the result in-store has enormous benefits with lucrative returns.

Hence, companies like FS Studio are working hard in these innovative technologies to ensure that manufacturers can experience a smooth transition to Industry 4.0. For example, ZeroSim, a technology in development and service by FS Studio, is a robotic simulation software technology built on Unity3D, a game engine, and ROS (Robotics Operating System). It provides a multitude of tools for building robots and simulation environments in Unity to interface with ROS.

Technologies like these add value to manufacturers, making robotic simulations faster, easier, and hassle-free to use for manufacturers. It also ensures that manufacturers can easily leverage the lofty benefits of robotic simulation software to transition themselves towards the next industrial revolution.

You may also like:

Leave a Reply

Your email address will not be published.