HomeServicesZeroSimDigital TwinSimulation
BlogContact

The industry swiftly moves towards the Future Of Industrial Robotics, i.e., the Fourth Industrial Revolution (FIR). With this, industries and production plants are moving towards digital technology and probably reaching an efficient automation solution. To pursue this goal, industries are marching to develop their enterprises and production sites with robotic technology.

Robotic technology is increasing in sophistication and complexities. It is also going through a vast evolution of its use case and efficiency. In earlier times, where robots were much slower, inefficient, and less capable. While with modern technology, robotics now progresses much faster, with more efficient and competent robots. The robotic market is blooming with the advancement of sensors, communications technology, processing technology, storage systems, battery technology, and electronic components’ general efficiency and power.

This boom of the robotic market is not only for the industrial robotic paradigm, but even the common consumer market is experiencing this boom, its in pair with the increasing availability, accessibility, and ease of use of robotic technology at all sides. Consequently, today robots are not only available for industries and production plants but also in the general consumer space. Hence, the robotic industry itself is rising as a capacity market. 

Read more: How Deep Learning Boosts Robotic Picking Flexibility

The robotic industry is growing at an unprecedented rate. With demands soaring through the sky, the robotic industry swiftly rises as one of the biggest markets. One of the most significant demands of robotic technology and robots is the industrial market with various industries and production sites. And since several types of industries currently “run” the world and robotic technology are at the forefront of these industries, it's one of the essential cornerstones of our future world.

With various robotic companies researching and developing innovative solutions and technologies within robotics, they are also propelling numerous industries towards success, efficiency, and even the future of the industrial robotics market, Industry 4.0. Furthermore, with robots simplifying and increasing the capabilities of industries, the robotic industry is also experiencing rapid growth. Consequently, researchers expect that the industrial robotic services alone will cross 4 Billion US Dollars in market value.

FS Studio is an innovative company that provides various state-of-the-art digital technology services like Robotic Simulation Services, Offline Programming, AI, AR, and VR. It also monitors the industry closely to prepare itself and its solutions to excel more in the future and essentially be future-proof.  Reports from this monitoring help our clients and partners to identify various companies and opportunities lying within them. Furthermore, it will help them plan out different strategies regarding the robotic services they are planning to get and optimize their market position and plans.

Read more: Why Should Companies Take A 360-Degree Approach To Robotics?

deep learning boosts robot picking flexibility

Following are the ten companies that will dominate the industrial market in robotics.

Mitsubishi Electric

With its establishment of robotic systems in 1980, Mitsubishi Electric has possibly been the leader in industrial robotics with automation since then. The company provides its services with a wide range of robotic systems and automation solutions that help to improve productivity and efficiency around the industry. It also specializes in high-speed and precision performance systems in the industry. Mitsubishi Electric provides RH-CH compact Selective Compliance Assembly Robot Arm (SCARA) and articulated arm robotic systems and provides delta style robots from leader innovator or pick and place robots, Codian Robotics. Mitsubishi Electric generally provides lightweight and value-for-money robot systems with reasonable costs and a warranty of about three years in a robot purchase.

(ABB) ASEA Brown Bover

ABB, or ASEA Brown Bover, is a robotic company with an international reach in over 100 countries. With its establishment in 1883, ABB remains to be a leader in robotic technology innovation. ABB also holds the prestige to be a company to pioneer the first electric microprocessor-controlled robot and be the world’s first company to produce an industrial paint robot. It has sold over 300 thousand robot units worldwide by 2019 and remains a multinational robot company with expertise in the automation and motion department. Some of its essential products include FlexPainter robots (IRB 5500-22), Pre-machining robots (IRB 6660), Press tending robots (IRB 6660), Dual-arm robot YuMi (IRB 14000), and SCARA robots (IRB 910SC).

B+M Surface Systems GmbH

In 1992, B+M Surface Systems had a high reputation for automation systems and remained the leader in high-quality painting plants with automation and different surface application systems. As its name implies, it's a world-leading robotic company in surface design and painting, all from design and installation to maintenance and support. They help their customers in all fronts of robot technology usage with high customization for their customers. It is a leader in surface painting robots with products like Painting Robots with its T1 X5 Series robots and Adhesive Dosing Systems with its T2 X5 series robots.

Yaskawa Electric

In 1915, Yaskawa led its journey towards the robotic industry by releasing the all-electric industrial robot, Motoman, in 1977. Since its release, Yaskawa has sold over 300 thousand units of Motoman, which is an all-electric industrial robot. Yaskawa remains the leader in applications like welding, packaging, assembly and material removal, material cutting, and dispensing.  It has sold vast numbers of products, including over 18 million inverters and 10 million servos. Its essential products include Arc Welding Robot with VA1400, Assembly Robots with HP20F, Pick and Pack robot with its G series robots, and Spot Welding with MH255.

Omron Adept Technologies

In 1948, Omron Adept Technologies was the leader in guidance systems with computer vision systems. It excels in designing and manufacturing these robots. It is also the largest robotics company that is based out of the USA. It usually provides cost-effective robotic solutions with the integration of various use-cases and automation.

Omron Adept Technologies also includes application software solutions with automation systems/equipment and mobile robots. Some of the critical robot products from Omron include Hornet, Cobra, eCobra, and Delta robot systems.

deep learning boosts robot picking flexibility

FANUC Robotics

FANUC is a leader in integrating Artificial Intelligence systems in robots and providing a wide range of industrial applications with robots of over 100  different models. It works on dynamic and smart solutions with AI integration and maintains its competitive edge with great flexibility. The FANUC robots are generally easy to operate, smart, and provide dynamic solutions. Some of the best FANUC robotic solutions include articulated robots of M-20B/25 series, collaborative robots with FANUC CR series, robots of R2000iC series, SCARA robots, and delta-style robots with M-1/2/3 series.

Kuka

Kuka is a German company that leads the robotic industry with its automated range of fully customizable software solutions with integrated robots with control technology and embedded automation systems. With its foundation going back to 1898, its focus and dedication to automation with robotics began in 2004 when the company either sold or closed other non-core departments to shift its primary focus towards automation and robotics. Some of the critical robotic systems of Kuka include Press-to-Press robots, Palletizing robots with its QUANTEC robots, some shelf-mounted robots, AGILUS robot system, which is a hygiene machine variant, and its KR AGILUS series, including KR 30 and 60 F series robots.

Epson Robots

EPSON is probably prominently known for its printing solutions in small printers. But the company was initially known for its automation systems and later became a major company dealing with various manufacturing sites with its different machinery solutions. Robotic technology from Epson excels in automation with several compact SCARA robots, PC-based and controlled robots. Its main products include G-series robots, SCARA with T-Series robots, and LS and RS series robots.

Kawasaki

In 1896, Kawasaki became a leading robotic technology company with over 160 thousand robot systems sold and installed. Kawasaki was thought to be the future of industrial robotics in Japan as it was the first company to commercialize industrial robots in Japan. It also pioneered and highly contributed to industry robot popularity and integration of various labor-saving systems and solutions. One of the most prominent products of Kawasaki has been its SCARA robot, duAro, which is a dual-arm robot with human collaboration capabilities. Some of its critical robotic products include Painting solutions with its K Series robots, Pick-and-Place robotic solutions with its Y-series robots, B-series robots for Spot welding, M series robots for medical and pharmaceutical solutions, and duAro SCARA robots.

Staubli

Though with a wide range of solutions, Staubli excels in Robots, Textiles, and Connectors. From its inception in 1892 in Switzerland with the textile business, Staubli began its industrial robotic journey devoted to quality engineering and factory floor solutions. Currently, Staubli also provides connector solutions with its expertise in both fluid and electrical connectors. With its accession of Unimation,  Staubli is firm in its position towards being a most innovative industrial robotic solution provider company. It also provides various software solutions and various collaborative robots. Some of the significant products of Staubli include its RX series robots, TX2 series robots, CS series robots, TS80 robots, and TP90 robots. Various industries and production facilities are looking to invest in robotic technology.  The whole industry is marching towards automation and its digital transformation to prepare itself for the future of industrial robotics with Industry 4.0. The robotic industry sets the path for these industries with its innovative robotic solutions and automation solutions. And these companies will undoubtedly be at the forefront when the industry sets its foot into this new landscape of Industry 4.0.

Industries are rapidly advancing. With growing adaptation and accessibility of state-of-the-art technologies, various industries’ production innovation and R&D technology are becoming very advanced, albeit more complex. However, with technologies getting more complex, they are also getting easier to adapt. So laden with numerous possibilities and opportunities, industries are adopting digital technologies in their industrial application to reap these lucrative advantages as deep learning boosts robot picking flexibility.

The ultimate pursuit of automation in industries and production goes through the path of intelligent and smart robots. With more demanding industries, newer and better robots can perform various industrial applications more smoothly and efficiently. But as industries expand their reach into more fields/sectors, they need robots to achieve even more different tasks in different environments.

This broad spectrum of need for the usability of robots leads to robotic technology not being able to keep up with the demand. Hence, traditional methods and approaches to robotics must be let go to introduce new and better techniques to robotic technology. Within the advent of digital technology lies more possibilities for robotics that are even unseen before.

Digital technologies and platforms like Robotic Simulation Services, Offline Programming, Augmented Reality, Virtual Reality, and Artificial Intelligence take the world by storm. They are now in integration or development for almost every industry possible. The robotics industry also is not lagging in this aspect, with robotic manufacturers or various services providers already utilizing these technologies to propel robotics further. Deep learning is one of the technologies in use, with much anticipation and exciting possibilities, within the robotic industry.

Let's talk about Deep Learning

Deep learning is a type of Artificial Intelligence, or more so a kind of Machine Learning approach. In the broader AI paradigm, Machine Learning is a subset of AI that refers to an AI system that can learn with the help of data instead of developers having to code it.  ML is an approach to AI that enables various algorithms to remember from data, i.e., training data consisting of input and output data, to infer a pattern or a “knowledge” in the input data about the output. With this knowledge, ML algorithms can effectively predict the outcomes with the analysis of input data.

Deep Learning is a similar approach. It's a family of algorithms in the machine learning paradigm based upon Artificial Neural Networks (ANNs). These ANNs in deep learning can perform representation learning. Representation learning is a method in which systems detect or infer a pattern or representation, i.e., features in the input data for feature detection or classification. Hence, computer science also defines it as feature learning since it detects features from raw data and uses them to perform some specific task.

How Deep Learning Boosts Robotic Picking Flexibility

Deep learning boosts robotic picking flexibility with its data by effectively imitating how intelligent creatures like humans gain knowledge and do certain things. In deep understanding, a system takes in input data and tries to infer a pattern or detect some specific feature in that data. This “learning” approach is known as deep learning. Furthermore, education can also be either supervised, unsupervised or semi-supervised.

These are various deep learning architectures that researchers combine up with various other computer techniques and technologies to enable different features and functions in robotics: deep neural networks, recurrent neural networks, convolutional neural networks. Deep reinforcement learning and deep belief networks are various architectures in deep learning—robotic technology pairs up these architectures with different hardware and technologies to build various robotic functions.

Read more: Why Should Companies Take A 360-Degree Approach To Robotics?

For instance, robotic researchers and developers use convolutional neural networks for computer vision with cameras and other sensors to give visual information like depth. Likewise, different architectures enable different computer application fields like speech recognition, natural language processing, image analysis, bioinformatics, etc. Moreover, these applications are often in use for various purposes within other industrial areas.

Why Deep Learning Boosts Robotic Picking Flexibility?

In robotics, one of the most complex things to perfect is its ability to pick things up. For human beings, picking items seems very easy. However, seemingly effortless things with biological creatures are not always similar to robotics and computer systems.

Thus, although it may seem that picking items up is easy, it is not the case. The complex interworking of different systems together to perform even a simple task is very hard for computers. For instance, to first pick things up, you need to know what you are picking.

This part is usually straightforward since, for example, you can tell a computer that the stuff it's gathering is in a specific location. But the hard part comes when it's doing the actual picking. For example, how is it even going to pick the object? Even in a single production environment, there are a variety of things with different shapes and sizes. In addition, objects have different textures, structures, and a specific suitable picking spot.

Read more: Top 3 Biggest Predictions for the Robotics Industry

We can undoubtedly program a robot to utilize information about a particular object and a suitable method to pick the thing, but programming it to select it is challenging. Relatively, programming a robot to choose only a single type of object can be easy, but you would need other robots for different kinds of things/products. So this is certainly not an effective method to accomplish this.

Furthermore, products and objects may behave differently in different environments, creating complexities in ways deep learning boosts picking flexibilities. For instance, a product with a smooth surface can be slippery to grab or hold onto in a humid environment. Moreover, picking other objects in different backgrounds requires the robot developer to program the robot for various environments and various things. Along with this, considering the wide range of products, this problem quickly becomes substantially huge.

One of the enormous complexities we are not even exploring yet remains motor skills. Programming a robot to perform specific motor skills and functions is one of the vastest complexities of the robot development paradigm. Even to grant them specific motor functions is very hard. That's why it's a huge deal, even if a robot can perform simple tasks like holding a cup, walking, etc. However, now you can certainly deal with these problems through various means.

For instance, a robot that needs to move can have wheels. A robot that does not have to move but grab onto things can have arms on a fixed body. But these solutions are also tough to implement. Add this to the use case, such as a moving robot that has to move on an uneven surface or a wrong road or even locations where there are no roads, i.e., hills, rocky places, etc. Then this problem becomes substantially more challenging. Similarly, for industrial robots, picking different products and objects is also a complex problem due to different environments and types of things it has to deal with in a particular manner.

Apart from these problems, one primary concern is how deep learning boosts robotic picking flexibility, computer vision. A robot needs to see the object it's picking up. Recognizing a thing insight is a significant feat of computer vision that is currently possible with a massive range of solutions available. But simply recognizing an object is enough to interact with the thing. The robot has to know what object it's looking at and determine how it will pick it up. It again involves problems regarding the size, shape, texture, and structure of the object or product.

In hindsight of all these problems, an industrial robot capable of gripping and interacting with different types of objects or products with other characteristics and properties in different conditions or environments is tough to build. Consequently, it is one of the biggest problems in the industrial robotic plane. It is where deep learning comes into play.

We can use various deep learning techniques to teach a system to recognize and interact with an object. Using deep learning methods, we can use data from multiple production sites, companies, and industries of interaction and manipulation of various things and products for training the system. This data can effectively help a deep learning model to “learn” how to pick different objects in different environments in various particular ways.

How Deep Learning Boosts Robotic Picking Flexibility

The initial data can come from systems already proficient in picking and dealing with objects, which would help in how deep learning boosts robotic picking flexibility. For instance, there is data with humans picking up things. These specialized robots pick only a specific object or interact with them, or even human operators that operate machines to pick up different objects. After data collection of these types, a robot with a deep learning system can go through a training process to effectively learn how to replicate the task or perform it more efficiently.

With this, data collection is complete from a specific specialized robot and for different machines. Moreover, developers and researchers can share and augment such data for training there be used robots for broader use cases and even interact and manipulate objects they are yet to interact with. The possibilities are endless as deep learning boosts robot picking flexibility. As a result, developers can build with a wide range of picking flexibility that can help an industry drive itself towards the end goal of automation. It is why companies like FS Studio provide various services regarding robots and AI tools like deep learning. With decades of collective experience and knowledge with a wide range of expertise, FS Studio provides deep learning services for various robots and other innovative services like Robot Simulation Services, Offline Programming Solutions, and the integration of innovative technologies like AR and VR in different systems.

The landscape of Robotics technology is evolving, pushing industries forward for a 360-degree approach to robotics. More so than before, today, robotic technology is progressing at a swift speed alongside its integration with technologies like Artificial Intelligence (AI), Simulation technology, Augmented Reality (AR), and Virtual Reality (VR). Robotics was always at the center of a future where industries are digital with automation at its core. However, industries that fully integrate AI and digital technology to enable automation with robots are still far away.

In the current world, car production and manufacturing is probably the industry with the highest level of robotic usage. One of the most prevalent uses of robotics and automation even in this industry is the Tesla manufacturing facility. Even though this is the case, Elon Musk, the CEO of  Tesla, admits that robots are tough to automate and efficiently run without advancing digital technologies like AI and more innovative technologies like the Offline Robot Programming Software Platform or Robotic Simulation Services.

However, with the advent of Industry 4.0, the next industrial revolution, we will see some industries take a 360-degree approach to robotics through digital technology. Robotics technology is a crucial part of this transformation. Hence, enterprises will have to change their traditional policy to robotics with a new innovative and modern digital strategy to keep up with the changing industry and competitors.

Read more: Top 3 Biggest Predictions for the Robotics Industry

With that said, industrial robotics is complex, in fact, very hard. With industries and production, the site the robots will have to work in is susceptible to all kinds of risks. These risks are not only limited to humans but also to the industry itself. Production environments generally contain various types of materials and substances that can create many unforeseen circumstances and problems. For example, rusts or corrosion of machine parts or robots, leaks, noise pollution, etc., are issues that the production will have to deal with almost regularly. Pair this with unforeseen problems in machines since they run all the time; industrial environments are very tough for robots to survive, which is why the 360-degree approach to robots is so important.

Not just the risks and problems for the robots, but the aftermaths of these problems and faults are more expensive to a production site. For instance, when a robot fails, or an installation of a new robot occurs, the actual production environment will probably suffer from its downtime. And industries do certainly not like downtimes. Downtimes lead to the stopping of whole production facilities and bar the production, resulting in the loss. Furthermore, this loss becomes more substantial if the materials or products that are not complete can go wrong. It will add the loss of materials and incomplete products to lower numbers of outgoing products from the factories.

360-Degree Approach To Robotics

Robotics in industries possesses more importance when it comes to error detection. Since production sites and factories can be dangerous and harmful for humans since they have to approach the machines to detect errors, it can be hazardous and even fatal in some cases. Hence, the emergence of drones and locomotive robots is rising in this department.  However, industries are still taking the old approaches to use robotics and digital technology.

Industries generally shape robots around the production and use cases in the production sites rather than the inverse. Although typically, enterprises approach robotics as only a medium to replace human resources either in potentially dangerous places or tasks that may not be possible for humans to perform, the 360-degree approach to robotics in the future would only develop the technology further. Instead of this, industries and production facilities should shape themselves around robotics. Of course, it does not mean changing the particular industries’ end goal towards robotics and its implementation. Instead, it means to shape the industry so that it embraces robotics and involves it in the actual process and communication of the production sites.

Read more: What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics

Usually, robots in industries are linear, i.e., they are put in place of a human to speed up a process/task with a set of inputs fed to them by the developers or operators. They only do or set out to do specific functions inside the production line.

For instance, we can use a robot to put a product inside a box, put product stickers in packages, and seal the box. However, these robots only perform one task, i.e., a robot for placing products in a box cannot close it or put product stickers on it. Therefore, it limits the opportunities and possibilities that robotics can unlock. For instance, with the integration of technologies like AI, robots can become more dynamic and a part of the actual production process rather than the production line.

With AI and technologies like simulation, innovations like Offline Robot Programming Software Platforms are possible. With this, robots become more helpful; they can even participate in production processes to make them brighter and effective. Moreover, With the possibilities of self real-time optimization and self-diagnosis possible, robots will become able to report errors or possible errors in the future and solve those problems faster than humans ever can. And the time essential for robots to process what went wrong and determine if a possible solution is tiny.

In comparison, humans must first come across the errors, either after the error has already happened or detect it beforehand. Then such errors have to go through actual experts and need proper analysis. Only after this, a solution can come up which can fix the problem. But, unfortunately, the developers or the debug team may misinterpret the answer due to insufficient data or enough time. Even during this time, though, the situation can escalate, sometimes even forcing a downtime in the production. But the upcoming 360-degree approach to robotics would change it all.

With the integration of robotics from the start, alongside the significant goals of the particular industry, the actual use cases of robotics with more comprehensive and newer possibilities can emerge. It will let the industries access the actual use case they want from robots and the robotic technology more appropriately instead of focusing on what robots can do afterward, limiting the robotic possibilities. Only after integrating robotics with the actual goal or vision can an industry properly access what they need from robotics and other complementary technologies.

360-Degree Approach To Robotics

Every industry has a different need. Along with this need, various production systems and methods emerge. Hence, every industry or company may need something different from robotic technology. Even without using the latest or bleeding-edge technology, a company may fulfill its actual needs, i.e., every company need not use them. Hence, every industry needs to use and approach robotics differently to achieve their needs.

For instance, in a data-driven industry, the static robots that cannot communicate or process does not make sense. Since it's a data-driven industry, utilizing such technology in their robots will provide them with numerous benefits.

In an industry where robots and humans have to work together, human-robot collaboration makes much sense for the upcoming 360-degree approach to robotics. For instance, to perform a task like inspection of a faulty machine, robots can collect data from the air or the ground, while humans can analyze them and provide their insight. It becomes even more efficient with technologies like digital twins, AR, or VR.

3D models with digital twins can be much more efficient if industries integrate them with robotics. Automation becomes much closer while remote operations can thrive. With simulation technology, the training and testing of robots will become a digital endeavor rather than an inefficient, risky and expensive physical approach. Digital technology for robotics can enable rapid prototyping, higher form of product innovation, more advanced Research and Development (R&D), all the while remaining inexpensive, safe, efficient, and fast.

The 360-degree approach to robotics would also impact how we teach the robots as well. Technologies like offline robot programming (OLP) will enable robotics to evolve more rapidly. Offline robot programming replaces the traditional approach to teaching robots with Teach Pendants. Teaching pendants can be very slow, inefficient, and resource-consuming on top of being a significant cause of downtimes when it comes to teaching a robot. Pendants require robots to be out of production and in teaching mode the whole time during their programming. It increases downtime during the installation of robots and brings downtimes if the production house wants to upgrade the programming or coding.

But OLP replaces all that with a software model of teaching. The generation, testing, and verification of the teaching programs are possible through software simulations through OLP. OLP effectively eliminates the need to take out robots during its teaching process, allowing production to continue and robots to work even when training. OLP even opens a path for rapid maintenance, repair, and continuous upgrading of robots, all due to its teaching possible through software updates. Along with this, adopting simulation technology is another major win in terms of robot research and development. Simulations with AI can enable whole new ways of robot development, testing, and deployment. Pair this with technologies like Machine Learning, deep learning, and digital twins, AR and VR. Robots will then indeed be able to thrive. Companies like FS Studio that thrive in product innovation and advanced R&D technology can provide the industry with a much-needed push to propel themselves towards Industry 4.0. With over a decade’s collective knowledge and experience, FS Studio delivers a plethora of solutions for robotic technology and helps companies take a 360-degree approach to robotics.

From everyday market consumers to innovative technologies like robotic simulation services, offline robot programming, AI, AR, and VR, one thing is for sure, the robotic technology in the future will reach places and fields that are unforeseen even today. So, researchers and market enthusiasts have already started to predict what the industry will be like in the future. Hovering over thousands of ideas and scenarios, they have come down to these top three predictions for the robotic industry.

The Robotics industry is continuously evolving and growing. Researchers estimate that the market for the robotic industry globally in 2020 was more than 27 Billion US Dollars. This figure, however, has high expectations to grow astronomically to more than 74 Billion US Dollars by 2026. Researchers also pair this expectation with an annual growth rate of 17.45%, which again believes it will grow more.

The mainstream market also reflects this growing influence of robotics. The demand for robots and robotic technology is increasing in industries and factories, and regular consumer space. It shows that the robotic industry will become more and more mainstream with its uses to be making places even in fields that we cannot foresee today.

Read more: Are You Still Manually Teaching Robots?

With the COVID-19 pandemic, industry and consumer trends are shifting. During the pandemic, automation and remote operations experienced a boom that saw changing needs among manufacturers and consumers. In addition, people working from home,  communication technology was on top of its game, with industries relating to remote communications increasing in value and influence.

It also brings together the sensing technology along it. With automation of tasks, even daily tasks being in demand, the robotic industry and the consumer industry focus on automation and sensing technology that enables it. Moreover, with automation comes data. Hence the data-driven industries like cloud technology are also increasing. Today’s data industry is so big that the tech giants of the current world are determinants of the amount of data they control and can process.

Another significant technology in communication, the 5G technology, is also a rave among consumers and industry alike. With this, the robotic industry is also taking advantage of 5G technology, with robots being more capable of high-speed communication and being more data-driven than ever.

We can compile all this information and trends of the current world into three things: Mainstream consumer space, Automation, and the data-driven industry and communication and sensing technology.

The demand for robotic and other state-of-the-art technology is increasing in the mainstream market. As a result, consumers are getting warier with these technologies and are willing to invest in them. It shows that the mainstream consumer market is undoubtedly aware that robotics technology is the future.

Furthermore, with or without the pandemic, communication and sensing technology is increasing in adoption and innovation, giving the green light to the predictions for the robotics industry. But due to the pandemic, it experienced a rapid increase in its adoption and development. Moreover, with people working from home and companies emphasizing remote working, communication technology is experiencing a high rise in demand. It is no different in robotic technology. Since robots integrate other technologies that are very advanced and highly complex, communication and networking will experience colossal development.

predictions for the robotics industry

Consumers will expect their devices to be able to communicate with them more seamlessly. Furthermore, every use case of any robotic technology will want to fully utilize this advancement in communication technology to enable different possibilities. With high-speed communication possible, fleets of robots will communicate more efficiently and rapidly, creating even more use cases. Furthermore, Fleets of communicating robots capable of working together as a unit to complete specific tasks together will also be a high possibility with newer communication standards like 5G.

Along with communication comes sensor technology. With sensors getting smaller with more efficiency but less power, it will be possible to use them even in unforeseen places and use cases. Furthermore, with home security systems improving daily and technologies like computer vision and natural language progressing, sensors adept at these technologies will also enhance more. So naturally, the robotics industry will also take advantage of this.

Since the robotic industry is mainly based around sensors and their capabilities, with the increasing efficiency of sensors, it will be possible to include more significant, more capable sensors in any robot.

Read more: What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics

Predictions for the robotic industry are getting wilder; however, the accomplishments don’t fail to amaze us. Like the battery technology is improving further, and these sensors are getting more and more power-efficient, it is almost certain that we will use various kinds of sensors in different fields that are even seen as not possible today. For instance, take our phones, for example. Mobile technology is improving at such a fast pace that with each increasing year or two, people feel obliged to upgrade their phones to a newer model since they have started to feel old even if they are only a year or two old.

Since phones are getting smarter, so are the sensors inside them. A smartphone has numerous sensors, from cameras to accelerators to some phones even having LiDAR sensors in them.  Compare this advancement to only a decade back, when phones with even a camera were tough to find. It acts as a testament to how far sensing technology has come and is improving at a fast pace. Of course, this also applies to robotic technology.

With sensors getting more efficient, smaller, more powerful while being more power-efficient, it will be possible for robot developers to pack more robust and accurate sensors in their robots. It will enable more probabilities. Furthermore, with sensors comes to their data. Sensors are devices that extract enormous amounts of data. However,  to process and handle this, data-driven technologies are promptly evolving, if not even more.

The data-driven industry is evolving at a pace that exceeded the predictions for robotic industries made before the pandemic. With almost all kinds of technology now capable of dealing with data, manufacturers are constantly packing their products with more data-driven features, thanks to the efficiency of processing units getting better. The data industry is so important today that the top tech leaders of the current world are determinants of the efficient utilization of data technology; with devices capable of collecting large amounts of data, whether, through sensors or user interactions, data-driven applications are certainly thriving.

With data comes technologies like Machine Learning, Deep Learning, and Artificial Intelligence (AI) applications. With AI comes the automation of the industry. The Robotics industry is undoubtedly at the forefront of automation technology, with humans having a vision of automated robots way back. However, what’s even more exciting about this data-driven technology is that it helps a robot have practical and smart applications and even helps to develop and build robots.

predictions for the robotics industry

Innovative technologies like  Simulations, AR, and VR will thrive under the data-driven industry after all these technologies rely heavily upon data. But with data-driven technology developing at a rapid rate, these technologies are also improving very fast. Moreover, simulations are now capable of imitating real-world environments and phenomena with very accurate physics engines. Robotic development is also possible with these technologies, especially since the robotic industry is a costly industry due to its high risk for humans and economic benefits and resource consumption.

Robotic research and development usually require many resources and skills willing to take a risk with high-value components, and research is for waste. Furthermore, since simulations and digital technologies like Robotic Simulation Services or Offline Robot Programming Software Platforms are mainstream, the future robotic industry will depend on these technologies.

With various advantages like rapid prototyping, faster and efficient designing process, fewer resources, and fewer requirements of highly skilled personnel, simulation technology will thrive in the future for the robotic industry. The robotic industry will design, test, develop, and research robotics inside simulations with technologies like digital twins.

The predictions for the robotic industry also indicate that the industries and production sites will be using technologies like Offline Robot Programming Platforms for teaching and programming robots, resulting in fewer downtimes and progressing more smoothly. It is because the robotic industry will have its core lying in digital technologies like these.

Robots of the future will also focus more on the human-robot collaboration where robots will be more capable of working together with humans. For this, integrating technologies like AR and VR in robotics and AI will be crucial. AR and VR will allow the robotic industry to venture towards complete digital premises along with remote technology.

Compiling all this information and trends in the world today, we can be sure that the future of the robotic industry looks to be very promising. From everyday market consumers to innovative technologies like robotic simulation services, offline robot programming, AI, AR, VR, one thing is for sure, the robotic technology in the future will reach places and fields that are unforeseen even today. With this, the top 3 most significant predictions for the robotic industry are:

  1. The general consumer market will adopt the robotic industry. With the increasing popularity of robotic products and machines among common consumers, the robotic industry will adopt this consumer space to produce robotic technology even for common usage. Enterprises will also adopt robotic technology more widely.
  2. With the increasing evolution of sensing and communication technology, the robotic industry will utilize this development to improve its reach further. The robotic industry will use more efficient, robust, and capable sensors to power more use cases. Communication technology will also power the future of robotics. With this, data-driven robotic technology will be the future.
  3. The predictions for the robotics industry also say that the future will see the adoption of digital technologies like Robotic Simulation Services, AR, VR, and Offline Programming Platforms. Thus, the robotic industry will move from the traditional approach towards a more digital approach while enabling rapid development and improvement in robotic technology. Furthermore, automation will be the top-of-the-line demand, and hence robotic industry will see a massive push towards automation.

The advent of next-generation technologies like Simulations, AR, VR, and AI continues to grow rapidly. With continuous evolution in their advancement and increasing accessibility, they can exponentially add value to manufacturers. Hence, influencing industries across the globe to adopt these technologies at an increasing rate. For example, artificial intelligence with immersive technologies like AR and VR swiftly transforms manufacturing processes and product development. But, on the other hand, robotic technology redefines the possibilities and opportunities in various fields and industries.

The increasing sophistication of robotic technology is visible due to giant leaps in the capabilities of current robotic systems. With technology evolving swiftly, the industry is also adopting newer technologies in its manufacturing and product development processes. One of these newer technologies the industry is moving towards is simulation technology.

With the dawn of Industry 4.0 upon us, industries undoubtedly need to advance towards digital transformation. In this advancement, simulation technology is a boon for manufacturers. Although simulation technology is not new due to its rapid evolution in recent years, it is expanding its horizon of possibilities and opportunities. Robotic technology is one of the unknown frontiers of simulation tech.

Read more: 12 Things to Consider When Exploring Offline Robot Programming Software Solutions

Simulation software has the power to enable rapid prototyping, testing, and development of product development processes and R&D technology. Computer simulation is one of the vital tools for industries like robotic development and manufacturing. With the crucial role of robots in the manufacturing industry, the development and advancement of robotic technology are significant for the whole manufacturing industry.

Why Simulation Softwares in Robot Development?

Robot research and development, along with its design and production, is very complex. It is not just because of the sophistication of the technologies in a robot. But also because of economic reasons and risks in robotic development. They also have to add value to the manufacturers as well.

Robots are usually expensive pieces of machinery. Industrial and manufacturing robots are costly due to the niche application following the niche research and development requirement. Moreover, even general robot design and development require massive resources, cost, time, and multidisciplinary skills. Furthermore, prototyping robots for testing, evaluation, and assessment need equally, if not more, resources, time, cost, and abilities. Add this with risks present in the real world, and robotic development truly becomes a huge undertaking.

Computer simulations for robotic development can solve all these problems. Computer simulations offer efficient and elegant solutions that are more cost-effective and less time-consuming. Any computer simulation software usually provides a 3D digital space to test and develop a product. Similarly, robot simulation software offers different environments and tools in a digital 3D area to test, run, research, evaluate and develop a robot.

Add Value to Manufacturers

Real robots in the real world consist of parts like motors, batteries, joints, arms, sensors, actuators, controllers, and other mechanical parts. Furthermore, robots also consist of networking, processing, and data handling components to analyze data and communicate. Apart from this, some robots also need to be smart and capable of making various decisions in real-time to add value to manufacturers. Consequently, due to these causes, robots in the real world are very complex and expensive. 

However, robotic simulation software provides all these tools, components, and parts in its digital space. Due to the high advancement of simulation software, today, simulation software can simulate all these parts and subsequently a fully functional robot that can run/operate in different conditions and environments. One just has to bring these parts and models together digitally. The simulation software also supports the design and development of these parts and models digitally. Hence, developing or putting together a robot in a simulation environment is very quickly relative to the real world.

Read more: Computer Simulation of Human Robots Collaboration in the Industries

Moreover, just like in the real world, robotic simulation software also allows for the testing and evaluation robots in different environments and conditions. Simulation software can simulate fluid and air dynamics, collisions, and many more physical, real-world phenomena with very accurate and modern physics that reflect real-world physics. All this happens similarly to the real world, except the simulations are fast and easy to develop and do not have to suffer huge risks and significant economic setbacks.

With computer simulations on hand, the risks and costs in association with robot development become redundant. It also ensures that the developers do not exhaust their time worrying about resources and cost but instead focus on the actual robot development. It also provides the developers with flexibility and space to develop the best robot for their requirements without compromising developmental risks and costs.

How they Add Value to Manufacturers

With the vast advantages of using simulation software in robotic research and development, manufacturers are beginning to realize the potential it carries. Furthermore, minimizing risk in robot development in manufacturing and factories also means developing robots with better design that suits the requirements to a far greater degree. As a result, companies or factories using robots in various product manufacturing processes can undoubtedly reap the benefits of better and cost-effective robotic solutions, which is possible due to robotic simulation software.

Proper simulation software can ensure the best systems for different applications and use cases. With rapid design and development in the card, even if a system is not up to the mark, companies can simply re-design it in the digital form with much lower costs and resources. In addition, with computing systems becoming cheaper and efficient, simulations can now help manufacturers build their robotic solutions to stay competitive in the market with new and better solutions.

There are numerous ways the robotic simulation software can add value to manufacturers, for example, cohesion with better designs, processes, and efficient investment.

With manufacturers expanding their product spectra to a wide range, robotic systems in use are not always general robots but tailored with specific needs and requirements in play. For instance, a car manufacturing company cannot automate the assembly line process without the same robots. Development of robots enters completion with niche use cases in mind. One robot installs engines while another robot paints the car; another robot detects flaws in the painting. Another installs wheels, another lifts machines before installation, and so on. Each different use case requires another robot.

Hence in this scenario, designing different robots for different use cases in the real world is very expensive as well as being time and resources consuming. However, creating robots for other use cases is much simpler, more accessible, faster, and cost-effective through simulation software. Consequently, robotic simulation software can also help manufacturers to customize and fine-tune robots according to their needs.  Moreover, such systems can undergo design and development to seamlessly fit into their existing facilities and systems quickly relative to traditional methods.

Automation also becomes much simpler with the capability of simulation software to test automation and smart technologies in a full-blown manner even before the final design is ready. Furthermore, simulation consisting of accurate and minute details add value to manufacturers, helping them configure their automation system so that the resultant robotic systems can meet their goals. However, manufacturers usually have to take significant risks for proof of design and automation process verification without simulation systems.

Due to all these advantages, simulation systems can return great results on the manufacturer’s investment. Furthermore, simulation software capable of self-diagnosis and automatic error reporting ensures that the finished designs and products are free of errors and potential flaws. It also ensures that the robotic simulation systems function with precision with known efficiencies in different environments and conditions. Thus, it helps manufacturers get maximum returns on their investment.

Moreover, the investment also becomes largely more safe and secure relative to the investment in traditional approaches. Furthermore, with the successful design and development of robots or systems meeting all requirements and needs beforehand, manufacturers can ensure further lucrative benefits and returns. Eventually, the end goal of manufacturers is to get returns from the end product. It largely depends upon the manufacturing process, which depends on the systems and procedures, including robotic systems used for manufacturing.

Hence, ultimately a successful result is a massive win for manufacturers. Robotic simulation software ensures that this result is successful and that the manufacturers get there with much lower costs, resources, time, and skills.

Add Value to Manufacturers

Conclusion

Industry 4.0 or the Fourth Industrial Revolution (FIR) is all about the digital transformation of enterprises. With Industry 4.0 approaching more closely than ever before, industries and manufacturers must keep up with advancements in technologies like simulation and artificial intelligence, AR, and VR. While it may seem that the transition to digital technology and simulations for product innovation, R&D, and robotic development is complex, the result in-store has enormous benefits with lucrative returns.

Hence, companies like FS Studio are working hard in these innovative technologies to ensure that manufacturers can experience a smooth transition to Industry 4.0. For example, ZeroSim, a technology in development and service by FS Studio, is a robotic simulation software technology built on Unity3D, a game engine, and ROS (Robotics Operating System). It provides a multitude of tools for building robots and simulation environments in Unity to interface with ROS.

Technologies like these add value to manufacturers, making robotic simulations faster, easier, and hassle-free to use for manufacturers. It also ensures that manufacturers can easily leverage the lofty benefits of robotic simulation software to transition themselves towards the next industrial revolution.

Combining simulation and AI technologies like Machine Learning & Deep Learning unveils outstanding new possibilities and opportunities. Moreover, the use of AI on traditional approaches to simulation may even bring forth a paradigm shift in the industry regarding how we perceive and develop the simulation.

Although simulation and Artificial Intelligence (AI) are two different technology paradigms, these technologies are related to each other in their primary forms. In computer engineering, simulation imitates an environment or a machine, while AI effectively simulates human intelligence.

While they may be related, simulation and AI were being used very differently with different mathematical and engineering approaches. However, in recent years, the development of AI-based simulations has experienced rapid growth in various industries.

For instance, now infamous, Cyberpunk 2077 used AI to simulate facial expressions and lip-syncing in the gaming industry. On the other hand, Microsoft Flight Simulator 2020 used AI to generate realistic terrains and air traffic.

Read more: Simulation in Digital Twin for Aerospace, Manufacturing, and Robotics

The power of AI to enable rapid simulation development with faster, more optimized, and less resource-hungry simulations even on a large scale would empower more applications of simulation technology in far wider industries and platforms.

However, to understand the benefits of using AI in simulations and its development, we need to understand the traditional simulation development approach and its use in this scenario at first.

combining simulations and AI

Traditional Simulation vs. AI-based Simulations

The basic idea behind simulation development is to gather data related to the machine, environment or anything for different inputs and conditions. These data would then be collected, analyzed, and studied to understand how the machine/environment/anything simulated functions and behaves under different conditions and situations.

This understanding would then be used to build a basic mathematical model that can govern and imitate the actual object in different conditions, then used to construct a simulation model that can replicate or simulate the real thing.

However, when AI is used to build these simulation models, the AI has to be fed with data related to the object/environment's behavior and how these subjects (object/environment to be simulated) function under different conditions and settings. During this process, the AI model requires relevant data that can be considered a sample of the simulation subject and represents the subject properly.

Generally, Neural Networks (NNs) would be used as the AI model to be trained.  After the training, this would simulate the subject and its behavior.

Both approaches, either traditional approaches or AI for simulation, have their advantages and disadvantages. One of the significant advantages of the conventional simulation method is that the mathematical model defined after studying the simulation subject can be reused and reconstructed easily.

Read more: AR and VR Technologies Guide Robots towards a Smarter Future

This allows other development teams to verify or reuse the same mathematical principles or models to generate the simulation. A traditional approach would also enable the developers to expand the simulation based on their understanding of the subject without explicit testing or proof test.

One of the significant disadvantages of this traditional approach remains to be its complex and resource-hungry process to generate the simulation. This is because everything has to be done by the simulation developers, who would also have to be experts in respective domains such that they need to understand the subject very closely.

Meanwhile, in AI-based simulation development, data is one of the essential components. The subject's information needs to be in abundant amounts and deterministic such that the data can represent the subject very closely.

This type of data may not be available readily when the data needs to be either collected or generated. But after the collection of accurate and abundant data, an AI-based/aided approach is very advantageous since there is no need to understand the subject by developers themselves.

Another significant advantage of the AI-based simulation holds within the power of AI to discover patterns or behavior in subjects not even considered or found by the developers. Apart from this, training an AI model usually takes a lot of time, but it may not be as resource hungry, complex, and costly as the traditional approach.

One of the significant disadvantages of the AI approach is that the model builder cannot be recognized or understood by developers in any way, so it cannot be usually reconstructed unless similar data or input is fed again to train the model.

Apart from this, due to the data required to qualify the model, expanding the model will generally be impossible without sufficient data.

combining simulations and AI

Combining Simulations and AI

Using AI in simulation generation or development would enable data-powered development with rapid changeability and minimal human involvement. Although the simulation traits would be considered too complex for humans to develop, AI may easily reconstruct such characteristics if sufficient data is provided.

Due to this, AI can be used to simulate something too hard, complex, or time-consuming for humans in a short time without too much effort. Thus, not only would the development of simulations be faster, more productive, and easy, but AI would also enable the rapid iteration and tweaking of simulations that would be far less feasible, especially on a large scale.

We can open new doors by combining the power of AI and simulation for product design and development. Generally, without AI simulations, developers have to design a product/model that must be intensively tested before production, and changes are needed after the story. Then, the same process would have to be repeated.

This process is very resource-intensive. But through AI, design changes and validation can be easily tested through simulation, enabling rapid iteration and development.

The development and adoption of AI for simulation are far more required in industries like Augmented Reality (AR) and VR (Virtual Reality), where the sheer complexity of building high scale models, environments, and graphics through the traditional methods would be infeasible compared to using AI to develop and deploy simulations with its data-driven approach of development. The opportunities in AR and VR could be far more explored and matured through the AI to generate and develop simulations.

Alongside this, simulation of subjects like fluids (air and water) is brutal to construct with only a traditional approach, the result of which would still not be good and very close to reality. But with the help of AI, such simulations would be closer to reality and more refined.

One of the significant advantages of AI-based simulation compared to the traditional approach is that the conventional system would be significantly resourced heavy since it usually calculates each simulation particle.

However, AI-based simulation would enable such complex simulations easily since AI can perform these calculations/predictions much faster and less resource hungry. Alongside this, generative simulations like the generation of models, terrains in games, and product designs would also be possible with AI.

For instance, take the game Microsoft Flight Simulator 2020 as an example. This game allows gamers to experience realistic flights worldwide without lagging in the quality of models, terrains, and environment.

By traditional approach, this would mean that the game developers would have to model and build all terrains used in 3D along with matching landscapes and backgrounds to give the simulation a realistic feeling.

This would have cost the game developers a massive amount of time, resources, and a considerable number of experts to deal with complex problems lying ahead in such an enormous project. Realistically, such a project would not be feasible or even practically be possible to complete.

But through the use of AI, the developers used massive amounts of data that are already available and combined them with vast amounts of computation through the power of the cloud to train an AI model that could build realistic 3D models of terrains, environments, along with grasses, trees, and water-based upon the real world.

The results produced were pretty spectacular and received substantial critical acclaim from game developers and gamers alike.

Conclusion

By combining simulations and AI, we can unfold new opportunities and endless possibilities in different industries.

Along with technologies like Machine Learning and Deep Learning, AI-enabled simulations will be propelled by the data-driven backend. Conquering the disadvantages of the traditional approach to simulation, AI-based simulations will be able to push the boundaries of what simulations can do.

Even the most complex simulations, which would be next to impossible when developed with traditional methods, will be attainable by combining simulations and AI.

Moreover, with AI enabling rapid development of more optimized and improved quality, the industry may experience a revolution empowering next-level simulations with realism and details never seen before.

chevron-down