The advent of next-generation technologies like Simulations, AR, VR, and AI continues to grow rapidly. With continuous evolution in their advancement and increasing accessibility, they can exponentially add value to manufacturers. Hence, influencing industries across the globe to adopt these technologies at an increasing rate. For example, artificial intelligence with immersive technologies like AR and VR swiftly transforms manufacturing processes and product development. But, on the other hand, robotic technology redefines the possibilities and opportunities in various fields and industries.
The increasing sophistication of robotic technology is visible due to giant leaps in the capabilities of current robotic systems. With technology evolving swiftly, the industry is also adopting newer technologies in its manufacturing and product development processes. One of these newer technologies the industry is moving towards is simulation technology.
With the dawn of Industry 4.0 upon us, industries undoubtedly need to advance towards digital transformation. In this advancement, simulation technology is a boon for manufacturers. Although simulation technology is not new due to its rapid evolution in recent years, it is expanding its horizon of possibilities and opportunities. Robotic technology is one of the unknown frontiers of simulation tech.
Read more: 12 Things to Consider When Exploring Offline Robot Programming Software Solutions
Simulation software has the power to enable rapid prototyping, testing, and development of product development processes and R&D technology. Computer simulation is one of the vital tools for industries like robotic development and manufacturing. With the crucial role of robots in the manufacturing industry, the development and advancement of robotic technology are significant for the whole manufacturing industry.
Why Simulation Softwares in Robot Development?
Robot research and development, along with its design and production, is very complex. It is not just because of the sophistication of the technologies in a robot. But also because of economic reasons and risks in robotic development. They also have to add value to the manufacturers as well.
Robots are usually expensive pieces of machinery. Industrial and manufacturing robots are costly due to the niche application following the niche research and development requirement. Moreover, even general robot design and development require massive resources, cost, time, and multidisciplinary skills. Furthermore, prototyping robots for testing, evaluation, and assessment need equally, if not more, resources, time, cost, and abilities. Add this with risks present in the real world, and robotic development truly becomes a huge undertaking.
Computer simulations for robotic development can solve all these problems. Computer simulations offer efficient and elegant solutions that are more cost-effective and less time-consuming. Any computer simulation software usually provides a 3D digital space to test and develop a product. Similarly, robot simulation software offers different environments and tools in a digital 3D area to test, run, research, evaluate and develop a robot.
Real robots in the real world consist of parts like motors, batteries, joints, arms, sensors, actuators, controllers, and other mechanical parts. Furthermore, robots also consist of networking, processing, and data handling components to analyze data and communicate. Apart from this, some robots also need to be smart and capable of making various decisions in real-time to add value to manufacturers. Consequently, due to these causes, robots in the real world are very complex and expensive.
However, robotic simulation software provides all these tools, components, and parts in its digital space. Due to the high advancement of simulation software, today, simulation software can simulate all these parts and subsequently a fully functional robot that can run/operate in different conditions and environments. One just has to bring these parts and models together digitally. The simulation software also supports the design and development of these parts and models digitally. Hence, developing or putting together a robot in a simulation environment is very quickly relative to the real world.
Read more: Computer Simulation of Human Robots Collaboration in the Industries
Moreover, just like in the real world, robotic simulation software also allows for the testing and evaluation robots in different environments and conditions. Simulation software can simulate fluid and air dynamics, collisions, and many more physical, real-world phenomena with very accurate and modern physics that reflect real-world physics. All this happens similarly to the real world, except the simulations are fast and easy to develop and do not have to suffer huge risks and significant economic setbacks.
With computer simulations on hand, the risks and costs in association with robot development become redundant. It also ensures that the developers do not exhaust their time worrying about resources and cost but instead focus on the actual robot development. It also provides the developers with flexibility and space to develop the best robot for their requirements without compromising developmental risks and costs.
How they Add Value to Manufacturers
With the vast advantages of using simulation software in robotic research and development, manufacturers are beginning to realize the potential it carries. Furthermore, minimizing risk in robot development in manufacturing and factories also means developing robots with better design that suits the requirements to a far greater degree. As a result, companies or factories using robots in various product manufacturing processes can undoubtedly reap the benefits of better and cost-effective robotic solutions, which is possible due to robotic simulation software.
Proper simulation software can ensure the best systems for different applications and use cases. With rapid design and development in the card, even if a system is not up to the mark, companies can simply re-design it in the digital form with much lower costs and resources. In addition, with computing systems becoming cheaper and efficient, simulations can now help manufacturers build their robotic solutions to stay competitive in the market with new and better solutions.
There are numerous ways the robotic simulation software can add value to manufacturers, for example, cohesion with better designs, processes, and efficient investment.
With manufacturers expanding their product spectra to a wide range, robotic systems in use are not always general robots but tailored with specific needs and requirements in play. For instance, a car manufacturing company cannot automate the assembly line process without the same robots. Development of robots enters completion with niche use cases in mind. One robot installs engines while another robot paints the car; another robot detects flaws in the painting. Another installs wheels, another lifts machines before installation, and so on. Each different use case requires another robot.
Hence in this scenario, designing different robots for different use cases in the real world is very expensive as well as being time and resources consuming. However, creating robots for other use cases is much simpler, more accessible, faster, and cost-effective through simulation software. Consequently, robotic simulation software can also help manufacturers to customize and fine-tune robots according to their needs. Moreover, such systems can undergo design and development to seamlessly fit into their existing facilities and systems quickly relative to traditional methods.
Automation also becomes much simpler with the capability of simulation software to test automation and smart technologies in a full-blown manner even before the final design is ready. Furthermore, simulation consisting of accurate and minute details add value to manufacturers, helping them configure their automation system so that the resultant robotic systems can meet their goals. However, manufacturers usually have to take significant risks for proof of design and automation process verification without simulation systems.
Due to all these advantages, simulation systems can return great results on the manufacturer’s investment. Furthermore, simulation software capable of self-diagnosis and automatic error reporting ensures that the finished designs and products are free of errors and potential flaws. It also ensures that the robotic simulation systems function with precision with known efficiencies in different environments and conditions. Thus, it helps manufacturers get maximum returns on their investment.
Moreover, the investment also becomes largely more safe and secure relative to the investment in traditional approaches. Furthermore, with the successful design and development of robots or systems meeting all requirements and needs beforehand, manufacturers can ensure further lucrative benefits and returns. Eventually, the end goal of manufacturers is to get returns from the end product. It largely depends upon the manufacturing process, which depends on the systems and procedures, including robotic systems used for manufacturing.
Hence, ultimately a successful result is a massive win for manufacturers. Robotic simulation software ensures that this result is successful and that the manufacturers get there with much lower costs, resources, time, and skills.
Conclusion
Industry 4.0 or the Fourth Industrial Revolution (FIR) is all about the digital transformation of enterprises. With Industry 4.0 approaching more closely than ever before, industries and manufacturers must keep up with advancements in technologies like simulation and artificial intelligence, AR, and VR. While it may seem that the transition to digital technology and simulations for product innovation, R&D, and robotic development is complex, the result in-store has enormous benefits with lucrative returns.
Hence, companies like FS Studio are working hard in these innovative technologies to ensure that manufacturers can experience a smooth transition to Industry 4.0. For example, ZeroSim, a technology in development and service by FS Studio, is a robotic simulation software technology built on Unity3D, a game engine, and ROS (Robotics Operating System). It provides a multitude of tools for building robots and simulation environments in Unity to interface with ROS.
Technologies like these add value to manufacturers, making robotic simulations faster, easier, and hassle-free to use for manufacturers. It also ensures that manufacturers can easily leverage the lofty benefits of robotic simulation software to transition themselves towards the next industrial revolution.
Computer Simulation of Human Robots Collaboration in the industries is closer than we think. The current industry is moving towards the Fourth Industrial Revolution (FIR). FIR or Industry 4.0 is the digital transformation of the existing industries to enable new ways of manufacturing & production with automation at its core. The digital world will effectively meet the real world at this stage, integrating them on a level never seen before. Human Robots collaboration is one of the significant parts of this integration. With transformative technologies like computer simulations, AR, VR, and digital twins, cooperation among humans and robots is an absolute path that the next generation of technology will take.
Computer simulation is a very crucial tool for industries like robotic research and engineering. With the increasing adoption of computer simulation in various industries, simulations are rapidly becoming a vital part of product innovation and R&D technology. It is especially true for the robotic industry since collaboration between humans and robots is an essential part of the human robot paradigm.
Where Does Computer Simulation Come into Play?
Some factors influence the possibility for robots and humans to work together and collaborate efficiently. One of the top priorities or factors that affect this collaboration is human safety. During the operation, development, or testing of this concept of computer simulation of human robots collaboration, human safety is a top priority and should never be compromised. For this, various safeguards or failsafe mechanisms, power limiting restrictions, tools to monitor for possible errors, and proper fallback plans can be helpful.
Alongside this, robots that are in use must be aware of their surroundings and environment. At the very least, the use case of the robot must reflect its awareness and capabilities. Furthermore, robots also must control and change their actions as per real-time feedback and happenings in their surroundings. Thus, it presents the robot research and development industry with another challenge of autonomy and the ability of robots to perceive their surroundings or environments efficiently.
Read more: How Are Industries Creating New Opportunities By Combining Simulations and AI
Conversely, bidirectional communication among robots and humans may open the door to fulfilling all the requirements necessary for a safe and effective human robot collaboration. But achieving such a feat is also not possible without proper testing and massive investments of time, resources, and money.
Computer Simulations can solve all these problems and complexities with efficient and elegant solutions. Computer simulation technology provides a modeling system to visualize any complex system, even 3D digital space. For example, a robot consists of joints, motors, arms, actuators, sensors, links, controllers, and other mechanical and electronic components like a battery, processing unit, and networking interfaces. All these components and elements can be costly when they reach the level of sophistication a robot requires. Alongside this, integrating these components into a complete robotic system in which these components work together efficiently as a whole system is also a very complex and expensive task to accomplish. Nevertheless, this is where computer simulations come into play.
The advancement in computer simulation technology now allows for the simulation of all these components and elements in a fully functional robot. Alongside this, computer simulation software can also simulate various environments and conditions under which a robot may operate. Much like a natural environment, a simulation environment allows for multiple experiments, tests, and evaluation of a robot, except it, is without all the costs and risks present when testing the robot in the real world. Computer simulations also enable monitoring and assessing robots with a very high level of sophistication in virtually any environment or condition possible.
Why is Computer Simulation of Human Robots Collaboration Important?
The human robot collaboration is essential for the factories of the future and all the possibilities that follow. In a space where robots and humans can work together efficiently to complete different tasks, endless opportunities emerge. For example, robots allow us to perform precarious and dangerous jobs that require massive strength or skill, along with repetitive or requiring extra precision. Meanwhile, some jobs require human intervention due to either being too expensive or complex to automate and jobs that require critical thinking and human intelligence. Thus, it constructively allows industries to utilize the best of both worlds efficiently.
For instance, risky jobs like mining, exploration of unknown borders and areas, repetitive assignments, lifting heavy loads, etc., have more practical industry use cases for robot in the field, but they also require human intervention. Similarly, jobs that require extra precision, like in surgery, may be more suited for robots. Still, due to a lack of intelligence and critical thinking, it is currently unable to do so. Likewise, human intervention is essential in search and rescue operations, but it also requires scanning large and potentially unsafe environments that are more suited for robots or drones. Alongside this, all factories and manufacturing industries cannot generally use robots due to either being too expensive to automate the job or too complex for robots to perform. Hence, human resources are used in various factories and manufacturing sites, albeit the factory and manufacturing sites are dangerous and unsafe.
These difficulties are easily removable if computer simulation of human robots collaboration becomes very efficient and easy to realize. Moreover, if such cooperation becomes possible to achieve, one can reap potential benefits from both worlds. For instance, robot developers in health care organizations can utilize the precision of a robot and the critical thinking of a surgeon to develop a surgical robot to perform complex surgeries on patients.
Read more: Simulation in Digital Twin for Aerospace, Manufacturing, and Robotics
Consequently, a collaboration between humans and robots that enables an open environment where humans and robots can work together to complete works with integration of benefits from both worlds is a very lucrative goal to achieve. Computer simulation opens the door to such a goal. Due to the numerous advantages computer simulations possess, various industries develop human robot collaboration systems.
Generally, robot development in computer simulation software starts with designing and prototyping the robot. It requires a massive amount of resources, cost, time, and multidisciplinary skills in the real world. Then, each prototype comes to its testing, assessment, and redesign of the system according to the evaluations and results. It also requires equally if not more massive amounts of resources, cost, time, and skills in the real world. For a complete robot consisting of all its features and functionalities and compliance with all the factors discussed above, this process of prototyping, redesign, and testing has to be repeated numerous times until the evaluation and results are entirely within acceptable terms.
However, with the help of computer simulations, all these processes become redundant. When robot development with computer simulations occurs, developers/manufacturers get a digital platform to perform rapid prototyping with testing, modeling, redesigning, and programming all within the simulation. With the help of the computer simulation, developers can design a robot with all the parts and components right from the start to get a robot model. This model can go through various experiments, evaluations, and assessments to ensure formal requirements compliance. If not, developers can make changes or even redesign the robot entirely without much effort since it's in a digital form.
Not only this enables rapid prototyping and development, it ensures that developers do not exhaust all their time worrying about resources or costs but utilize that time for better ideas and models. It also opens the door for creative minds to flourish and experiment with various designs and configurations of robots. Furthermore, since the initial design process starts with a digital model, developers can tweak, organize and play with different formats. Finally, it will ensure that the design phase outputs the team's accurate designs with an efficient and agile developmental process.
Moreover, testing and evaluation of robots in different environments is also possible with error reporting and monitoring systems working together to gather essential data. It ensures that all unexpected problems or errors that the developers may encounter during the physical build of the robot are taken care of and solved. Testing with trajectory planning, verifying algorithm operation and efficiency, verifying the integrity of the design, and overall working of the robot can all be done in simulations. Testing various fluid mechanisms, aerodynamics, mechanical integrity, and kinetic forces with realistic physics engines is also possible.
One of the most vital computer simulation of human robots collaboration is human safety. Simulations enable testing for human safety and protection in numerous conditions and environments. We can quickly test and examine communications, control, and safety mechanics inside computer simulations without ever having to put a human at risk. With technologies like Augmented Reality (AR), Virtual Reality (VR), and intelligent AI systems, humans can test these robots with immersive experiences in realistic environments without taking risks.
It will rapidly evolve the development of human robot collaboration with the power of rapid prototyping, innovative product development systems, and efficient R&D technology. Furthermore, with Industry 4.0 gradually moving from embedded systems towards the digital transformation of the industries, simulations can open the door to new ways of development and enhance the much sought-perfect cyber-physical system (CPS).
With the advent of computer simulations, robot development and research is moving away from machines with no or low-level intelligence towards a more autonomous, adaptable, flexible, and re-configurable system that can work efficiently with humans. With computer simulations, human collaboration with intelligent robots will be possible across various industries where the whole collaborative system will be efficient, sustainable, effective, and safe. And our approach of creating the computer simulation of human robots collaboration will be completed.