Building intelligent infrastructure with digital twins has helped several companies to collect, extract, and analyze data. Digital twin technology or virtual twin is overgrowing with increasing accessibility and adaptability. As Industry 4.0 comes closer, technologies surrounding digital twins are also maturing and continue to develop. With the incorporation of technologies like the Internet of Things (IoT), data analysis, and Artificial Intelligence (AI), digital twins enhance R&D innovation with intelligent services like automation, self-monitoring, and real-time optimization. It enables rapid design & development and smart solutions in production, sales, logistics, and overall supply chain.
With the ability to enhance current manufacturing & product development, industries worldwide are incorporating digital twin technology. We can already see this accelerating adoption of digital twins across the industry. Although the global twin market was currently at 5.4 billion US Dollars in 2020, much of its slump is due to the worldwide pandemic. In addition, several industries shut down due to lockdowns and social distancing being the new norm during 2020 because of COVID-19. Nevertheless, the digital twin market is slowly rising again, with a tremendous rise expected after 2021. As a result, the global digital twin market will likely reach 63 billion US Dollars by 2027 due to a high growth rate of 42.7% annually.
What is Digital Twin?
While the idea of building intelligent infrastructure with digital twins is not entirely a new concept, due to its current exponential rise and growth, digital twins are undoubtedly growing more and more prominent. Along with the advancement in IT and digital technology infrastructure, digital twins are also evolving rapidly. In general, the concept of digital twinning represents a physical object or environment in a digital form that possesses its accurate characteristics and behavior. While 3D models and simulations also can describe an object or environment, twins systems do more than that.
A digital twin generally represents a physical object or environment not just in a static manner but in a dynamic form. A digital twin represents every phase of the lifecycle of a physical object or environment. A digital twin represents a physical object or environment from its design phase to manufacturing and maintenance and changes due to re-resign, iteration, and refining the object.
Read more: How Oil and Gas Industry Operators Benefit from Digital Twin Technology
Hence, a digital twin is less of a 3D model rather more like an information model. Unlike traditional 3D models, building intelligent infrastructure with digital twins needs a more dynamic and adaptive approach. They can evolve and change over time concerning changes and enhancement in information and data. Digital twins can communicate, update and even learn similarly to their physical counterparts through data exchange with Artificial Intelligence at its core.
Artificial Intelligence with technologies like Machine Learning and Deep Learning enables a digital twin to behave as accurately as possible in contrast with its physical counterpart. Due to this dynamic nature of digital twins, they are in use to explore solutions, detect and prevent problems even before they happen and essentially plan for the future. Armed with these intelligent and smart solutions, companies and organizations worldwide rapidly adopt these technologies in their operations and global supply chain.
Building Intelligent Infrastructure with Digital Twins
Digital twins have five levels of sophistication. Ranging from a level 1 twin that can describe and visualize the product to a level 5 twin model that can operate autonomously, different levels of digital twin require different levels of infrastructure. For instance, a level 1 twin does not require advanced Artificial Intelligence or Machine Learning systems, but a level 5 twin does need them. Level 2 digital twin is an informative twin that needs to incorporate additional operational and sensory data. Furthermore, level 3 is a predictive twin that can use these different data to infer and make predictions. On the other hand, the Level 4 digital twin is a comprehensive twin that can consider and simulate future scenarios to predict and learn from them.
Building digital twin technology includes converging technologies like IoT, data analysis, design & development of the twin either in 2D or 3D, and incorporating AI and technologies like machine learning and deep learning. The digital twin infrastructure is not only in a digital form but also in physical form. This is because a digital twin simulation model resides in a digital format and connects the physical world alongside it. This connection is the representation of both digital models and physical models such that they represent and replicate each other. Every change in the digital or physical model must be synchronized, and both should also respond to each other’s differences.
The actual connection is made through digital models. We can link the physical world with the virtual world by twins modeling and simulating the physical world to map and represent it in digital form. On the other hand, we can connect the virtual world with the physical one by replicating any changes and updates made in the virtual world in the physical world itself. It will ensure that neither the digital form nor the physical form is not synchronized.
In digital twin technology, synchronization must be in real-time when building intelligent infrastructure with digital twins. Real-time synchronization and simulation of the product is the following infrastructure for digital twins. Whenever a product is in the developmental phase of production, the status of the digital twin must also reflect that. The changes occurring in the digital twin must also be replicated in the physical product. Therefore, the changes in materials, processes, environmental, and every other change must be synchronized across physical and digital forms.
Read more: How Digital Twins Can Help In Saving The Environment
Apart from this, the digital twin infrastructure also requires data analysis for deep learning and intelligent systems. Artificial Intelligence generally powers these intelligent systems along with Machine Learning and Deep Learning capabilities. This is necessary for smart analytics and prediction. ML and deep learning systems must be capable of analyzing substantial amounts of data. This data must be representing the actual physical product in real-world environments. Such data are generated and collected by sensors placed in the physical world and physical development.
The data collection is a crucial metric for a system to detect anomalies or errors through analysis in the digital twins platform. Usually, ML systems process these data types and perform pattern recognition to make predictions or suggestions. Thus, these systems enable self-monitoring, predictive maintenance and diagnosis, alert systems for possible future errors, and detection of abnormalities or inconsistencies in the product.
Due to this, the data must be accurate and representative of the actual physical product and environment with great precision. These types of data also are helpful for the corporations or organizations for their product analysis and study.
These infrastructures together enable all the digital twin advantages. The convergence of these technologies is a complex task. Nevertheless, the resultant solution offers an intelligent system that can track past system analytics to predict future solutions and real-time product optimization. Companies are rapidly advancing towards implementing digital twin technologies in their platforms and systems to leverage such benefits.
Building the Infrastructures
Building digital twin infrastructures is a very complicated and complex process. Since digital twins incorporate various technologies together, it is tough to integrate these technologies to work together flawlessly. Only with such integration can one enable proper digital twin technology and can leverage its benefits.
Since the technologies part of the model twins infrastructures are different, companies must be willing to take on R&D for every technology when building intelligent infrastructure with digital twins. Moreover, if not for flawless integration, the technologies must at least be working together, which is a challenging task. However, technology is rapidly growing, and so is its accessibility and ease of use. Hence, integrating these technologies is increasingly easier to enable the tech stack for digital twins.
With the power of the cloud, technology today is dependent mainly upon real-time computing. With the help of the cloud, companies can leverage virtually endless amounts of computing to enable various services, including digital twins. Furthermore, cloud computing allows companies to build intelligent systems that are ideal for integrating multiple infrastructures of the digital twin technology.
One of the most prevalent uses of cloud computing is Artificial Intelligence. Due to the nature of Machine Learning and deep learning, immense computing power is necessary to develop these systems. Cloud computing shines brightly in this field due to its vast pre-built infrastructure and network of computer systems. In cloud computing, these computer systems are connected through an extensive network of servers and processing systems. Cloud computing service providers serve this network of different systems as a single system with enormous computing power.
Alongside this, a system for efficient and accurate modeling of the physical world with high-performance systems for real-time optimization and synchronization is mainly necessary. Moreover, deep learning and data analytics with intelligent AI systems to enable smart solutions with automation at its core is also imperative. Furthermore, a unified system integrating all these technologies is crucial while building an infrastructure for digital twins.
Companies like FS Studio pioneer product innovation and transformative R&D technology through already established and proven digital infrastructure. Since deploying and building intelligent infrastructure with digital twins is very complex and challenging for companies and organizations, FS Studio provides innovative and smart solutions for these problems. Consequently, companies can focus on their primary product innovation rather than shifting their resources towards building a digital infrastructure.
Challenges of creating digital twins are increasing exponentially, especially with the advancement of technologies like simulation, modeling, and data analysis, digital twins of objects and environments are increasingly becoming more accessible and adaptable across various industries. Furthermore, with the integration of Artificial Intelligence with Machine Learning & Deep Learning, digital twins will transform industries across different spectrums, including the manufacturing industry.
The Fourth Industrial Revolution, or FIR or Industry 4.0 in short, is the automation of traditional manufacturing, production & other related industries with the digital transformation of traditional practices through modern technologies. Thus, industry 4.0 will be the age of digital technologies. Machine to Machine communication (M2M) and the Internet of Things (IoT) will work together to enable automation, self-monitoring, real-time optimization, and the production industry’s revolution.
Digital twins will be at the forefront of Industry 4.0. With its power of rapid designing & development, iteration & optimization in almost every engineering process & practice, digital twins will enable new opportunities and possibilities. In addition, digital twins will transform various manufacturing & production processes, drastically reduce time & costs, optimize maintenance and reduce downtime.
While digital twin technology is not entirely new, its growth and adoption are skyrocketing across various industries in recent years, while the challenges of creating digital twins are also rising. As a result, the valuation of the global digital twin market was sitting at 5.4 billion US Dollars in 2020. Furthermore, although its market was experiencing a slump in 2020 due to the COVID-19 pandemic, it will undoubtedly recover and experience exponential growth again. Consequently, researchers expect that the global digital twin market will reach 63 billion US Dollars by 2027 while rising at the growth rate of 42.7% annually.
Over the last decade, the evolution of the manufacturing and production industry has been mainly focusing on reducing costs, increasing quality, becoming flexible, and reaching customer needs across the supply chain. The manufacturing industry is adopting different modern technologies to achieve these goals. Millennium digital technologies have also been part of this technology stack due to the innovation and opportunities it brings to the table.
Different companies and organizations are using twin tech accordingly in different scales and nature. Due to this, the technology in use varies across the industry, such that some industries use the latest bleeding-edge systems while others use legacy and proven techniques. Companies generally use the latest tech when it becomes available to use the latest features and functionalities. On the other hand, proven legacy systems are in use due to their stability and ease of use.
Read more: How Are Industries Creating New Opportunities By Combining Simulations and AI
Likewise, different uses of twinning sims in various industries possess other challenges. Apart from this, integration technologies like the Internet of Things (IoT), cloud, big data, and different approaches to digital twin integration will only increase the challenges for digital twins in terms of the sheer complexity of implementation. However, this also presents an enormous opportunity for industries to adopt and align these technologies to suit different needs to solve these complexities and challenges. Subsequently, companies like FS Studio solve the challenges of creating digital twins, providing a platform for the manufacturers or companies to work on without dealing with complexities.
Generally, the goal of any twin manufacturing is to create a twin or model of a real-world object in digital form. Furthermore, the aim is to make indistinguishable virtual digital twins from the actual physical object. Therefore, from the perspective of a manufacturer or a product development company, a digital twin technology will create an actual physical product experience in digital form. Hence, a digital twin for a product, object, or environment will consistently provide information and expertise throughout the whole product cycle.
A virtual twin can also serve companies for feedback collection alignment, useful for the product or the design team. Results from various tests may provide results that can be useful too. The design/engineering/manufacturing team can compile this information, feedback, and results for multiple purposes from the digital twin model. Furthermore, this compilation can also provide additional insights into the product, which can be very useful to tweak, change or even redesign the product entirely. This digital approach will consume much fewer resources, effort, and costs than the traditional physical approach. Moreover, these changes will also be reflected on the twin's systems instantly as the teams make these changes. This will ultimately allow crews to perform true real-time optimization of a product or a manufacturing process.
It will drastically improve the efficiency of designing and developing a product or a process. In addition, digital twins also enable higher flexibility across the overall design and development process. Furthermore, this flexibility comes at a lower cost and additional agility in manufacturing or product development. Hence, digital twin technology becomes very appealing for manufacturers and product developers due to these advantages and benefits.
One of the main challenges of creating digital twins remains to be the convergence of existing data, processes, and products in the digital form to be easily accessible and usable for the current or future teams in involvement. Moreover, such convergence may also change a company’s complete organizational structure from their R&D technology and product innovation to sales and promotion. Furthermore, incorporating technologies like IoT, the actual development of 2D or 3D models & simulations, and data analysis for consistent process, quality & authentic experience of the product remains a very complex process.
Apart from this, the actual use of digital twins created is also another challenge. The infrastructure and platform needed to use such digital twins are also essential, albeit complex, things to build. For example, suppose a team can create a car’s digital twin for a car manufacturer company. But problems with digital twins are that there is no actual use of the digital twin except for visualizing the vehicle. Even for proper visualization of the car across teams, different platforms and tools are necessary to often serve niche use cases of the company.
For instance, a car company needs a motor, brake, acceleration, air dynamics, and other niche simulations for the digital twin of their car. The technology stack should be able to perform various maneuvers a vehicle performs on the road. Aerodynamics and gravity simulation is a massive deal for car manufacturers. Integrating these simulations is also a monumental task.
Read more: Simulation in Digital Twin for Aerospace, Manufacturing, and Robotics
Along with this, for the actual process of testing and developing products, the platform has to simulate various objects, environments, and conditions necessary for such functions. Alongside this, the platform should also be able to report errors & statistical data on simulations running while constantly monitoring and diagnosing the product during its testing or development. Collaboration between team members on the platform is also necessary for a large-scale company. Integration of Artificial Intelligence and technologies like Machine Learning and Deep Learning is also a very challenging task to accomplish.
Digital twin technology is also often associating itself with complementary technologies like Virtual Reality (VR) and Augmented Reality (AR). The use of VR and AR in a digital twin platform will upgrade the realism and accuracy of the product experience. With realistic simulations and modeling in VR and AR’s capability to enhance a product experience, the 4.0 industry will incorporate these technologies at the forefront with digital twin technology, increasing the challenges of creating digital twins. Alongside this, integrating the digital twin with the actual physical manufacturing process is also a huge challenge.
Although companies will have to adopt this new industrial revolution 4.0 with digital twin-driven smart manufacturing, the overall process will not be that complex. The hard part is the convergence of different technologies to enable a platform for generating this digital twin and integrating it with the actual physical process in product development or manufacturing. However, since the digital twin simulation accurately represents the actual physical product, the product/manufacturing team will have almost no difficulty incorporating this digital twin tech in their physical process.
Therefore, companies like FS Studio help product developers and manufacturers to focus only on product development and design rather than the process of adoption of the digital twin. While different industries are transitioning towards Industry 4.0 technologies, various platforms and solutions establish themselves as leaders in cutting-edge technologies like the digital twin model with AR VR to eliminate the complexities present while the transition happens. It will help the companies and organizations focus on their primary and core goals instead of shifting their resources and concentrate on their growth to the next industrial revolution.
Realization of challenges for the convergence of technologies like IoT, design, and generation of 2D or 3D models & simulation and analysis of existing data remains. With this, the incorporation of Artificial Intelligence, Machine Learning, and data analysis also pose challenges regarding automation, self-monitoring, and real-time optimization. Subsequently, corporations and manufacturers moving towards Industry 4.0 must place digital twin technology at its core.
It will help companies and organizations transition smoothly towards the industry 4.0 revolution, which incorporates product development and digital transformation. With the power of rapid design and development, new production and R&D innovation will take over the industry, reducing the challenges of creating digital twins in the transition to industry 4.0. Subsequently, with digital twin technology, industries across the spectrum will be growing exponentially in their move towards the next industrial revolution.