The landscape of Robotics technology is evolving, pushing industries forward for a 360-degree approach to robotics. More so than before, today, robotic technology is progressing at a swift speed alongside its integration with technologies like Artificial Intelligence (AI), Simulation technology, Augmented Reality (AR), and Virtual Reality (VR). Robotics was always at the center of a future where industries are digital with automation at its core. However, industries that fully integrate AI and digital technology to enable automation with robots are still far away.
In the current world, car production and manufacturing is probably the industry with the highest level of robotic usage. One of the most prevalent uses of robotics and automation even in this industry is the Tesla manufacturing facility. Even though this is the case, Elon Musk, the CEO of Tesla, admits that robots are tough to automate and efficiently run without advancing digital technologies like AI and more innovative technologies like the Offline Robot Programming Software Platform or Robotic Simulation Services.
However, with the advent of Industry 4.0, the next industrial revolution, we will see some industries take a 360-degree approach to robotics through digital technology. Robotics technology is a crucial part of this transformation. Hence, enterprises will have to change their traditional policy to robotics with a new innovative and modern digital strategy to keep up with the changing industry and competitors.
Read more: Top 3 Biggest Predictions for the Robotics Industry
With that said, industrial robotics is complex, in fact, very hard. With industries and production, the site the robots will have to work in is susceptible to all kinds of risks. These risks are not only limited to humans but also to the industry itself. Production environments generally contain various types of materials and substances that can create many unforeseen circumstances and problems. For example, rusts or corrosion of machine parts or robots, leaks, noise pollution, etc., are issues that the production will have to deal with almost regularly. Pair this with unforeseen problems in machines since they run all the time; industrial environments are very tough for robots to survive, which is why the 360-degree approach to robots is so important.
Not just the risks and problems for the robots, but the aftermaths of these problems and faults are more expensive to a production site. For instance, when a robot fails, or an installation of a new robot occurs, the actual production environment will probably suffer from its downtime. And industries do certainly not like downtimes. Downtimes lead to the stopping of whole production facilities and bar the production, resulting in the loss. Furthermore, this loss becomes more substantial if the materials or products that are not complete can go wrong. It will add the loss of materials and incomplete products to lower numbers of outgoing products from the factories.
Robotics in industries possesses more importance when it comes to error detection. Since production sites and factories can be dangerous and harmful for humans since they have to approach the machines to detect errors, it can be hazardous and even fatal in some cases. Hence, the emergence of drones and locomotive robots is rising in this department. However, industries are still taking the old approaches to use robotics and digital technology.
Industries generally shape robots around the production and use cases in the production sites rather than the inverse. Although typically, enterprises approach robotics as only a medium to replace human resources either in potentially dangerous places or tasks that may not be possible for humans to perform, the 360-degree approach to robotics in the future would only develop the technology further. Instead of this, industries and production facilities should shape themselves around robotics. Of course, it does not mean changing the particular industries’ end goal towards robotics and its implementation. Instead, it means to shape the industry so that it embraces robotics and involves it in the actual process and communication of the production sites.
Read more: What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics
Usually, robots in industries are linear, i.e., they are put in place of a human to speed up a process/task with a set of inputs fed to them by the developers or operators. They only do or set out to do specific functions inside the production line.
For instance, we can use a robot to put a product inside a box, put product stickers in packages, and seal the box. However, these robots only perform one task, i.e., a robot for placing products in a box cannot close it or put product stickers on it. Therefore, it limits the opportunities and possibilities that robotics can unlock. For instance, with the integration of technologies like AI, robots can become more dynamic and a part of the actual production process rather than the production line.
With AI and technologies like simulation, innovations like Offline Robot Programming Software Platforms are possible. With this, robots become more helpful; they can even participate in production processes to make them brighter and effective. Moreover, With the possibilities of self real-time optimization and self-diagnosis possible, robots will become able to report errors or possible errors in the future and solve those problems faster than humans ever can. And the time essential for robots to process what went wrong and determine if a possible solution is tiny.
In comparison, humans must first come across the errors, either after the error has already happened or detect it beforehand. Then such errors have to go through actual experts and need proper analysis. Only after this, a solution can come up which can fix the problem. But, unfortunately, the developers or the debug team may misinterpret the answer due to insufficient data or enough time. Even during this time, though, the situation can escalate, sometimes even forcing a downtime in the production. But the upcoming 360-degree approach to robotics would change it all.
With the integration of robotics from the start, alongside the significant goals of the particular industry, the actual use cases of robotics with more comprehensive and newer possibilities can emerge. It will let the industries access the actual use case they want from robots and the robotic technology more appropriately instead of focusing on what robots can do afterward, limiting the robotic possibilities. Only after integrating robotics with the actual goal or vision can an industry properly access what they need from robotics and other complementary technologies.
Every industry has a different need. Along with this need, various production systems and methods emerge. Hence, every industry or company may need something different from robotic technology. Even without using the latest or bleeding-edge technology, a company may fulfill its actual needs, i.e., every company need not use them. Hence, every industry needs to use and approach robotics differently to achieve their needs.
For instance, in a data-driven industry, the static robots that cannot communicate or process does not make sense. Since it's a data-driven industry, utilizing such technology in their robots will provide them with numerous benefits.
In an industry where robots and humans have to work together, human-robot collaboration makes much sense for the upcoming 360-degree approach to robotics. For instance, to perform a task like inspection of a faulty machine, robots can collect data from the air or the ground, while humans can analyze them and provide their insight. It becomes even more efficient with technologies like digital twins, AR, or VR.
3D models with digital twins can be much more efficient if industries integrate them with robotics. Automation becomes much closer while remote operations can thrive. With simulation technology, the training and testing of robots will become a digital endeavor rather than an inefficient, risky and expensive physical approach. Digital technology for robotics can enable rapid prototyping, higher form of product innovation, more advanced Research and Development (R&D), all the while remaining inexpensive, safe, efficient, and fast.
The 360-degree approach to robotics would also impact how we teach the robots as well. Technologies like offline robot programming (OLP) will enable robotics to evolve more rapidly. Offline robot programming replaces the traditional approach to teaching robots with Teach Pendants. Teaching pendants can be very slow, inefficient, and resource-consuming on top of being a significant cause of downtimes when it comes to teaching a robot. Pendants require robots to be out of production and in teaching mode the whole time during their programming. It increases downtime during the installation of robots and brings downtimes if the production house wants to upgrade the programming or coding.
But OLP replaces all that with a software model of teaching. The generation, testing, and verification of the teaching programs are possible through software simulations through OLP. OLP effectively eliminates the need to take out robots during its teaching process, allowing production to continue and robots to work even when training. OLP even opens a path for rapid maintenance, repair, and continuous upgrading of robots, all due to its teaching possible through software updates. Along with this, adopting simulation technology is another major win in terms of robot research and development. Simulations with AI can enable whole new ways of robot development, testing, and deployment. Pair this with technologies like Machine Learning, deep learning, and digital twins, AR and VR. Robots will then indeed be able to thrive. Companies like FS Studio that thrive in product innovation and advanced R&D technology can provide the industry with a much-needed push to propel themselves towards Industry 4.0. With over a decade’s collective knowledge and experience, FS Studio delivers a plethora of solutions for robotic technology and helps companies take a 360-degree approach to robotics.
From everyday market consumers to innovative technologies like robotic simulation services, offline robot programming, AI, AR, and VR, one thing is for sure, the robotic technology in the future will reach places and fields that are unforeseen even today. So, researchers and market enthusiasts have already started to predict what the industry will be like in the future. Hovering over thousands of ideas and scenarios, they have come down to these top three predictions for the robotic industry.
The Robotics industry is continuously evolving and growing. Researchers estimate that the market for the robotic industry globally in 2020 was more than 27 Billion US Dollars. This figure, however, has high expectations to grow astronomically to more than 74 Billion US Dollars by 2026. Researchers also pair this expectation with an annual growth rate of 17.45%, which again believes it will grow more.
The mainstream market also reflects this growing influence of robotics. The demand for robots and robotic technology is increasing in industries and factories, and regular consumer space. It shows that the robotic industry will become more and more mainstream with its uses to be making places even in fields that we cannot foresee today.
Read more: Are You Still Manually Teaching Robots?
With the COVID-19 pandemic, industry and consumer trends are shifting. During the pandemic, automation and remote operations experienced a boom that saw changing needs among manufacturers and consumers. In addition, people working from home, communication technology was on top of its game, with industries relating to remote communications increasing in value and influence.
It also brings together the sensing technology along it. With automation of tasks, even daily tasks being in demand, the robotic industry and the consumer industry focus on automation and sensing technology that enables it. Moreover, with automation comes data. Hence the data-driven industries like cloud technology are also increasing. Today’s data industry is so big that the tech giants of the current world are determinants of the amount of data they control and can process.
Another significant technology in communication, the 5G technology, is also a rave among consumers and industry alike. With this, the robotic industry is also taking advantage of 5G technology, with robots being more capable of high-speed communication and being more data-driven than ever.
We can compile all this information and trends of the current world into three things: Mainstream consumer space, Automation, and the data-driven industry and communication and sensing technology.
The demand for robotic and other state-of-the-art technology is increasing in the mainstream market. As a result, consumers are getting warier with these technologies and are willing to invest in them. It shows that the mainstream consumer market is undoubtedly aware that robotics technology is the future.
Furthermore, with or without the pandemic, communication and sensing technology is increasing in adoption and innovation, giving the green light to the predictions for the robotics industry. But due to the pandemic, it experienced a rapid increase in its adoption and development. Moreover, with people working from home and companies emphasizing remote working, communication technology is experiencing a high rise in demand. It is no different in robotic technology. Since robots integrate other technologies that are very advanced and highly complex, communication and networking will experience colossal development.
Consumers will expect their devices to be able to communicate with them more seamlessly. Furthermore, every use case of any robotic technology will want to fully utilize this advancement in communication technology to enable different possibilities. With high-speed communication possible, fleets of robots will communicate more efficiently and rapidly, creating even more use cases. Furthermore, Fleets of communicating robots capable of working together as a unit to complete specific tasks together will also be a high possibility with newer communication standards like 5G.
Along with communication comes sensor technology. With sensors getting smaller with more efficiency but less power, it will be possible to use them even in unforeseen places and use cases. Furthermore, with home security systems improving daily and technologies like computer vision and natural language progressing, sensors adept at these technologies will also enhance more. So naturally, the robotics industry will also take advantage of this.
Since the robotic industry is mainly based around sensors and their capabilities, with the increasing efficiency of sensors, it will be possible to include more significant, more capable sensors in any robot.
Read more: What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics
Predictions for the robotic industry are getting wilder; however, the accomplishments don’t fail to amaze us. Like the battery technology is improving further, and these sensors are getting more and more power-efficient, it is almost certain that we will use various kinds of sensors in different fields that are even seen as not possible today. For instance, take our phones, for example. Mobile technology is improving at such a fast pace that with each increasing year or two, people feel obliged to upgrade their phones to a newer model since they have started to feel old even if they are only a year or two old.
Since phones are getting smarter, so are the sensors inside them. A smartphone has numerous sensors, from cameras to accelerators to some phones even having LiDAR sensors in them. Compare this advancement to only a decade back, when phones with even a camera were tough to find. It acts as a testament to how far sensing technology has come and is improving at a fast pace. Of course, this also applies to robotic technology.
With sensors getting more efficient, smaller, more powerful while being more power-efficient, it will be possible for robot developers to pack more robust and accurate sensors in their robots. It will enable more probabilities. Furthermore, with sensors comes to their data. Sensors are devices that extract enormous amounts of data. However, to process and handle this, data-driven technologies are promptly evolving, if not even more.
The data-driven industry is evolving at a pace that exceeded the predictions for robotic industries made before the pandemic. With almost all kinds of technology now capable of dealing with data, manufacturers are constantly packing their products with more data-driven features, thanks to the efficiency of processing units getting better. The data industry is so important today that the top tech leaders of the current world are determinants of the efficient utilization of data technology; with devices capable of collecting large amounts of data, whether, through sensors or user interactions, data-driven applications are certainly thriving.
With data comes technologies like Machine Learning, Deep Learning, and Artificial Intelligence (AI) applications. With AI comes the automation of the industry. The Robotics industry is undoubtedly at the forefront of automation technology, with humans having a vision of automated robots way back. However, what’s even more exciting about this data-driven technology is that it helps a robot have practical and smart applications and even helps to develop and build robots.
Innovative technologies like Simulations, AR, and VR will thrive under the data-driven industry after all these technologies rely heavily upon data. But with data-driven technology developing at a rapid rate, these technologies are also improving very fast. Moreover, simulations are now capable of imitating real-world environments and phenomena with very accurate physics engines. Robotic development is also possible with these technologies, especially since the robotic industry is a costly industry due to its high risk for humans and economic benefits and resource consumption.
Robotic research and development usually require many resources and skills willing to take a risk with high-value components, and research is for waste. Furthermore, since simulations and digital technologies like Robotic Simulation Services or Offline Robot Programming Software Platforms are mainstream, the future robotic industry will depend on these technologies.
With various advantages like rapid prototyping, faster and efficient designing process, fewer resources, and fewer requirements of highly skilled personnel, simulation technology will thrive in the future for the robotic industry. The robotic industry will design, test, develop, and research robotics inside simulations with technologies like digital twins.
The predictions for the robotic industry also indicate that the industries and production sites will be using technologies like Offline Robot Programming Platforms for teaching and programming robots, resulting in fewer downtimes and progressing more smoothly. It is because the robotic industry will have its core lying in digital technologies like these.
Robots of the future will also focus more on the human-robot collaboration where robots will be more capable of working together with humans. For this, integrating technologies like AR and VR in robotics and AI will be crucial. AR and VR will allow the robotic industry to venture towards complete digital premises along with remote technology.
Compiling all this information and trends in the world today, we can be sure that the future of the robotic industry looks to be very promising. From everyday market consumers to innovative technologies like robotic simulation services, offline robot programming, AI, AR, VR, one thing is for sure, the robotic technology in the future will reach places and fields that are unforeseen even today. With this, the top 3 most significant predictions for the robotic industry are: