HomeServicesZeroSimDigital TwinSimulation
BlogContact

Challenges of creating digital twins are increasing exponentially, especially with the advancement of technologies like simulation, modeling, and data analysis, digital twins of objects and environments are increasingly becoming more accessible and adaptable across various industries. Furthermore, with the integration of Artificial Intelligence with Machine Learning & Deep Learning, digital twins will transform industries across different spectrums, including the manufacturing industry.

The Fourth Industrial Revolution, or FIR or Industry 4.0 in short, is the automation of traditional manufacturing, production & other related industries with the digital transformation of traditional practices through modern technologies. Thus, industry 4.0 will be the age of digital technologies. Machine to Machine communication (M2M) and the Internet of Things (IoT) will work together to enable automation, self-monitoring, real-time optimization, and the production industry’s revolution.

Digital twins will be at the forefront of Industry 4.0. With its power of rapid designing & development, iteration & optimization in almost every engineering process & practice, digital twins will enable new opportunities and possibilities. In addition, digital twins will transform various manufacturing & production processes, drastically reduce time & costs, optimize maintenance and reduce downtime.

While digital twin technology is not entirely new, its growth and adoption are skyrocketing across various industries in recent years, while the challenges of creating digital twins are also rising. As a result, the valuation of the global digital twin market was sitting at 5.4 billion US Dollars in 2020. Furthermore, although its market was experiencing a slump in 2020 due to the COVID-19 pandemic, it will undoubtedly recover and experience exponential growth again. Consequently, researchers expect that the global digital twin market will reach 63 billion US Dollars by 2027 while rising at the growth rate of 42.7% annually. 

Over the last decade, the evolution of the manufacturing and production industry has been mainly focusing on reducing costs, increasing quality, becoming flexible, and reaching customer needs across the supply chain. The manufacturing industry is adopting different modern technologies to achieve these goals. Millennium digital technologies have also been part of this technology stack due to the innovation and opportunities it brings to the table.

Challenges of Creating Digital Twins

Different companies and organizations are using twin tech accordingly in different scales and nature. Due to this, the technology in use varies across the industry, such that some industries use the latest bleeding-edge systems while others use legacy and proven techniques. Companies generally use the latest tech when it becomes available to use the latest features and functionalities. On the other hand, proven legacy systems are in use due to their stability and ease of use.

Read more: How Are Industries Creating New Opportunities By Combining Simulations and AI

Likewise, different uses of twinning sims in various industries possess other challenges. Apart from this, integration technologies like the Internet of Things (IoT), cloud, big data, and different approaches to digital twin integration will only increase the challenges for digital twins in terms of the sheer complexity of implementation. However, this also presents an enormous opportunity for industries to adopt and align these technologies to suit different needs to solve these complexities and challenges. Subsequently, companies like FS Studio solve the challenges of creating digital twins, providing a platform for the manufacturers or companies to work on without dealing with complexities. 

Generally, the goal of any twin manufacturing is to create a twin or model of a real-world object in digital form. Furthermore, the aim is to make indistinguishable virtual digital twins from the actual physical object. Therefore, from the perspective of a manufacturer or a product development company, a digital twin technology will create an actual physical product experience in digital form. Hence, a digital twin for a product, object, or environment will consistently provide information and expertise throughout the whole product cycle.

A virtual twin can also serve companies for feedback collection alignment, useful for the product or the design team. Results from various tests may provide results that can be useful too. The design/engineering/manufacturing team can compile this information, feedback, and results for multiple purposes from the digital twin model. Furthermore, this compilation can also provide additional insights into the product, which can be very useful to tweak, change or even redesign the product entirely. This digital approach will consume much fewer resources, effort, and costs than the traditional physical approach. Moreover, these changes will also be reflected on the twin's systems instantly as the teams make these changes. This will ultimately allow crews to perform true real-time optimization of a product or a manufacturing process.

It will drastically improve the efficiency of designing and developing a product or a process. In addition, digital twins also enable higher flexibility across the overall design and development process. Furthermore, this flexibility comes at a lower cost and additional agility in manufacturing or product development. Hence, digital twin technology becomes very appealing for manufacturers and product developers due to these advantages and benefits.

One of the main challenges of creating digital twins remains to be the convergence of existing data, processes, and products in the digital form to be easily accessible and usable for the current or future teams in involvement. Moreover, such convergence may also change a company’s complete organizational structure from their R&D technology and product innovation to sales and promotion. Furthermore, incorporating technologies like IoT, the actual development of 2D or 3D models & simulations, and data analysis for consistent process, quality & authentic experience of the product remains a very complex process.

Challenges of Creating Digital Twins

Apart from this, the actual use of digital twins created is also another challenge. The infrastructure and platform needed to use such digital twins are also essential, albeit complex, things to build. For example, suppose a team can create a car’s digital twin for a car manufacturer company. But problems with digital twins are that there is no actual use of the digital twin except for visualizing the vehicle. Even for proper visualization of the car across teams, different platforms and tools are necessary to often serve niche use cases of the company.

For instance, a car company needs a motor, brake, acceleration, air dynamics, and other niche simulations for the digital twin of their car. The technology stack should be able to perform various maneuvers a vehicle performs on the road. Aerodynamics and gravity simulation is a massive deal for car manufacturers. Integrating these simulations is also a monumental task.

Read more: Simulation in Digital Twin for Aerospace, Manufacturing, and Robotics

Along with this, for the actual process of testing and developing products, the platform has to simulate various objects, environments, and conditions necessary for such functions. Alongside this, the platform should also be able to report errors & statistical data on simulations running while constantly monitoring and diagnosing the product during its testing or development. Collaboration between team members on the platform is also necessary for a large-scale company. Integration of Artificial Intelligence and technologies like Machine Learning and Deep Learning is also a very challenging task to accomplish.

Digital twin technology is also often associating itself with complementary technologies like Virtual Reality (VR) and Augmented Reality (AR). The use of VR and AR in a digital twin platform will upgrade the realism and accuracy of the product experience. With realistic simulations and modeling in VR and AR’s capability to enhance a product experience, the 4.0 industry will incorporate these technologies at the forefront with digital twin technology, increasing the challenges of creating digital twins. Alongside this, integrating the digital twin with the actual physical manufacturing process is also a huge challenge.

Although companies will have to adopt this new industrial revolution 4.0 with digital twin-driven smart manufacturing, the overall process will not be that complex. The hard part is the convergence of different technologies to enable a platform for generating this digital twin and integrating it with the actual physical process in product development or manufacturing. However, since the digital twin simulation accurately represents the actual physical product, the product/manufacturing team will have almost no difficulty incorporating this digital twin tech in their physical process.

Therefore, companies like FS Studio help product developers and manufacturers to focus only on product development and design rather than the process of adoption of the digital twin. While different industries are transitioning towards Industry 4.0 technologies, various platforms and solutions establish themselves as leaders in cutting-edge technologies like the digital twin model with AR VR to eliminate the complexities present while the transition happens. It will help the companies and organizations focus on their primary and core goals instead of shifting their resources and concentrate on their growth to the next industrial revolution.

Realization of challenges for the convergence of technologies like IoT, design, and generation of 2D or 3D models & simulation and analysis of existing data remains. With this, the incorporation of Artificial Intelligence, Machine Learning, and data analysis also pose challenges regarding automation, self-monitoring, and real-time optimization. Subsequently, corporations and manufacturers moving towards Industry 4.0 must place digital twin technology at its core.

It will help companies and organizations transition smoothly towards the industry 4.0 revolution, which incorporates product development and digital transformation. With the power of rapid design and development, new production and R&D innovation will take over the industry, reducing the challenges of creating digital twins in the transition to industry 4.0. Subsequently, with digital twin technology, industries across the spectrum will be growing exponentially in their move towards the next industrial revolution.

Oil and gas industry operators benefit from digital twin through a quick response when something goes wrong.  With digital twin technology, operators can use data they collect from sensors on their equipment to create accurate models that replicate how these machines operate in real-time. 

It means that if an anomaly occurs, there's no need for expensive trial-and-error or lengthy troubleshooting procedures - open up your model, and you'll know what went wrong. In addition to saving money by avoiding costly repairs, this will save time which means more production time!  

This article describes how digital twins are helping organizations make sense of large volumes of diverse data sources—whether internally generated or provided by third parties—and use them effectively for making. 

Emerging Technologies and Digital Transformation:

The new face of the oil and gas industry is quickly becoming digitized. Emerging technologies allow for production to become a cycle, automated, efficient, and streamlined - but this also means that you get to deal with operational intelligence.  

Digital transformation will affect every stage of a company's lifecycle- from upstream operations to midstream labor-management down into downstream sales efforts. Even services in oil fields can be managed more efficiently digitally through Emerging Technologies.  It will challenge operators to transform substantial data sets acquired in various processes into actionable intelligence.

Oil and gas industry operators benefit from digital twin through advanced analytics in their plant operations to improve the performance of assets, reduce unplanned downtime, and extend equipment life. In addition to these things, it also allows for a greater return on investment by identifying complex problems. 

Digital transformation provides opportunities for improved return on investment by identifying quick fixes upstream, midstream, and downstream processes.

Read more: How Digital Twins Can Help In Saving The Environment 

In addition, with the digital twin, a machine's maintenance and operational intelligence are never compromised. 

With predictive analytics for maintenance and prescriptive analytics for operations intelligence, your business will always have the edge over any of its competitors by being able to fix problems before they even happen! In addition, the augmented reality provides tools that improve both productivity time and the effectiveness of the repair.

How oil and industry operators benefit from digital twin technology

Digital Twin Mirrors Manufacturing Big Data:

The oil & gas industry is a massive business that generates an incredible amount of data. The oil & industry data will typically have quality reports, process control history, operational deviations and variations, product blends and formulas, etc., related to the production process.

The Bureau of Labor Statistics found that this sector had more stored data than any other business or industrial sector in a recent survey among US manufacturers.

The data generated by today's connected world comes in a wide variety of formats and needs to be aggregated, analyzed, and converted into actionable information.

The digital twin is a virtual representation of your production plant that can provide personnel with operational intelligence. This process starts by combining Big Data, statistical sciences, rules-based logic, and artificial intelligence into one easy-to-use package called predictive analytics.

Read more: Simulation in Digital Twin for Aerospace, Manufacturing, and Robotics

Advanced machine learning allows the company to discover complex problems shaping up in their manufacturing processes and then determine ways to resolve them before they become costly. 

The move from predictive analytic models will eventually lead manufacturers out on top because it utilizes big data effectively without adding too much cost or complexity along the way. 

Digital Twin and Machine OEMs:

The relative benefits of the digital twin will depend on many factors, not limited to complexity and quality. As assets increase in sophistication, demand for a digital representation is bound to overgrow, too - with one difference: ubiquity across its lifecycle. The genuine virtual version will contain information about design as well as manufacturing and service life. 

There has been some debate over who should be overseeing them: those with knowledge or experts in data science? Without answers, we won't know how best to utilize their potential capabilities

The oil and gas equipment OEMs (Original equipment manufacturers) are traditionally the best informed about information, such as engineering analysis data. However, end-users of these assets require this operational performance data to be successful in their jobs. 

For a digital twin to work effectively, the manufacturer should share the information or offer an online service-based business to monitor and optimize digital and physical asset performances. 

It includes servicing, optimizing operations with real-time data analytics, improving safety in complex environments like offshore drilling rigs, or carrying out hazardous tasks like handling chemicals at a refinery. 

Implementing this type of initiative could be done through partnerships between IIoT software vendors that develop solutions to support these new approaches. In addition, there are emerging opportunities within large organizations that have been adopting advanced techniques across their business units. 

Manufacturers of long-lifecycle products such as gas turbines and pumps are coming to understand that after-sale service is a significant differentiator for them. Implementing digital twin services will improve efficiency in the field, which can be very helpful when considering how many people it takes on average to change out oil filters at most factories worldwide. 

By connecting remote sensors with real-time data analytics, companies have new opportunities not only have they have never seen before but also ones that were previously unaffordable due to cost considerations or complex engineering problems involved.

Manufacturers who implement this intelligent technology into their manufacturing process stand poised to provide better customer satisfaction rates and reduced downtime through continuous monitoring, thereby increasing profitability by improving quality control metrics. 

Oil and Gas Industry Operators Benefit from Digital Twin & Asset Performance Management:

With digital transformation, oil & gas companies are redefining their business models and operations, but these changes would not be possible without effective asset performance management (APM).

APM can help oil & gas firms to increase maintenance efficiency and effectiveness. 

It helps to avoid costly unplanned downtime while minimizing the need for scheduled downtime. It also improves safety by cutting down on risks of accidents. 

With this strategic approach to managing assets in place, the company's regulatory compliance costs will also decrease as well as minimizing the risk of non-compliance which is always a top concern when it comes to environmental protection regulations

Data is a valuable resource, but it cannot be easy to manage due to the sheer abundance and variety of sources. Modern APM can alleviate this by collecting all information into one system for ease-of-use and quicker analysis periods so that valuable insights are never lost again!

Imagine life without oil & gas. It would be much less convenient, not to mention plain dangerous. That's why you should invest in the industry today! 

Operators collect data and analyze it.  The approach enables companies to develop new techniques with better efficiency, safety, yield rates, etc., leading us towards a brighter future for all involved parties in your investments. 

How oil and industry operators benefit from digital twin technology

The technology around collecting and analyzing data has enabled many improvements for those invested in this sector. This work can lead industries into their "brightest" futures through increased production flexibility or more efficient operations...and it only gets easier when people are willing to dedicate themselves fully toward these goals.

APM is a new way to monitor and manage oil production from unconventional sources. APM integrates into the larger automation environment, enabling companies to take advantage of shale oil and gas opportunities, ultra-deepwater, or subsea applications.

Accurate and timely data is the lifeblood of a company's success. In today's business world, oil companies have to constantly adapt their operations to improve efficiency and safety standards for employees operating on site. 

It becomes difficult to comply with regulations across different sectors without an efficient way of collecting accurate information about all aspects, from production levels and equipment status up through downstream applications like environmental impact reports or health & safety assessments.

Midstream operators can now benefit from improved visibility into what goes wrong when things go wrong to act quickly. It is possible because integrated APM solutions aggregate real-time operational event intelligence at every level - including plants, refineries, pipelines, and transportation networks. 

Conclusion: 

Fossil fuels have powered the world ever since the Industrial revolution. However, Digital technologies like artificial intelligence (AI) and Blockchain are making the process of extracting energy more accessible, cheaper, more efficient, less risky - and cleaner! 

Digital twin technology is a new, innovative innovation that has the power to change the way we work. For example, we can use this new technology to create digital replicas of our environments and assets – also known as virtual simulations – and have them interact in real-time with their physical counterparts. 

It means you could simulate making any significant changes or decisions which would otherwise be costly! 

Digital twins are changing today's way we operate by providing information about our environment and previously unavailable assets. 

Oil and gas industry operators benefit from the digital twin significantly. The benefits include increased safety, improved production rates, lower maintenance costs, and reduced downtime. With these advantages in mind, it's no wonder why more companies are jumping on board the digital twin train!

chevron-down