The landscape of Robotics technology is evolving, pushing industries forward for a 360-degree approach to robotics. More so than before, today, robotic technology is progressing at a swift speed alongside its integration with technologies like Artificial Intelligence (AI), Simulation technology, Augmented Reality (AR), and Virtual Reality (VR). Robotics was always at the center of a future where industries are digital with automation at its core. However, industries that fully integrate AI and digital technology to enable automation with robots are still far away.
In the current world, car production and manufacturing is probably the industry with the highest level of robotic usage. One of the most prevalent uses of robotics and automation even in this industry is the Tesla manufacturing facility. Even though this is the case, Elon Musk, the CEO of Tesla, admits that robots are tough to automate and efficiently run without advancing digital technologies like AI and more innovative technologies like the Offline Robot Programming Software Platform or Robotic Simulation Services.
However, with the advent of Industry 4.0, the next industrial revolution, we will see some industries take a 360-degree approach to robotics through digital technology. Robotics technology is a crucial part of this transformation. Hence, enterprises will have to change their traditional policy to robotics with a new innovative and modern digital strategy to keep up with the changing industry and competitors.
Read more: Top 3 Biggest Predictions for the Robotics Industry
With that said, industrial robotics is complex, in fact, very hard. With industries and production, the site the robots will have to work in is susceptible to all kinds of risks. These risks are not only limited to humans but also to the industry itself. Production environments generally contain various types of materials and substances that can create many unforeseen circumstances and problems. For example, rusts or corrosion of machine parts or robots, leaks, noise pollution, etc., are issues that the production will have to deal with almost regularly. Pair this with unforeseen problems in machines since they run all the time; industrial environments are very tough for robots to survive, which is why the 360-degree approach to robots is so important.
Not just the risks and problems for the robots, but the aftermaths of these problems and faults are more expensive to a production site. For instance, when a robot fails, or an installation of a new robot occurs, the actual production environment will probably suffer from its downtime. And industries do certainly not like downtimes. Downtimes lead to the stopping of whole production facilities and bar the production, resulting in the loss. Furthermore, this loss becomes more substantial if the materials or products that are not complete can go wrong. It will add the loss of materials and incomplete products to lower numbers of outgoing products from the factories.
Robotics in industries possesses more importance when it comes to error detection. Since production sites and factories can be dangerous and harmful for humans since they have to approach the machines to detect errors, it can be hazardous and even fatal in some cases. Hence, the emergence of drones and locomotive robots is rising in this department. However, industries are still taking the old approaches to use robotics and digital technology.
Industries generally shape robots around the production and use cases in the production sites rather than the inverse. Although typically, enterprises approach robotics as only a medium to replace human resources either in potentially dangerous places or tasks that may not be possible for humans to perform, the 360-degree approach to robotics in the future would only develop the technology further. Instead of this, industries and production facilities should shape themselves around robotics. Of course, it does not mean changing the particular industries’ end goal towards robotics and its implementation. Instead, it means to shape the industry so that it embraces robotics and involves it in the actual process and communication of the production sites.
Read more: What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics
Usually, robots in industries are linear, i.e., they are put in place of a human to speed up a process/task with a set of inputs fed to them by the developers or operators. They only do or set out to do specific functions inside the production line.
For instance, we can use a robot to put a product inside a box, put product stickers in packages, and seal the box. However, these robots only perform one task, i.e., a robot for placing products in a box cannot close it or put product stickers on it. Therefore, it limits the opportunities and possibilities that robotics can unlock. For instance, with the integration of technologies like AI, robots can become more dynamic and a part of the actual production process rather than the production line.
With AI and technologies like simulation, innovations like Offline Robot Programming Software Platforms are possible. With this, robots become more helpful; they can even participate in production processes to make them brighter and effective. Moreover, With the possibilities of self real-time optimization and self-diagnosis possible, robots will become able to report errors or possible errors in the future and solve those problems faster than humans ever can. And the time essential for robots to process what went wrong and determine if a possible solution is tiny.
In comparison, humans must first come across the errors, either after the error has already happened or detect it beforehand. Then such errors have to go through actual experts and need proper analysis. Only after this, a solution can come up which can fix the problem. But, unfortunately, the developers or the debug team may misinterpret the answer due to insufficient data or enough time. Even during this time, though, the situation can escalate, sometimes even forcing a downtime in the production. But the upcoming 360-degree approach to robotics would change it all.
With the integration of robotics from the start, alongside the significant goals of the particular industry, the actual use cases of robotics with more comprehensive and newer possibilities can emerge. It will let the industries access the actual use case they want from robots and the robotic technology more appropriately instead of focusing on what robots can do afterward, limiting the robotic possibilities. Only after integrating robotics with the actual goal or vision can an industry properly access what they need from robotics and other complementary technologies.
Every industry has a different need. Along with this need, various production systems and methods emerge. Hence, every industry or company may need something different from robotic technology. Even without using the latest or bleeding-edge technology, a company may fulfill its actual needs, i.e., every company need not use them. Hence, every industry needs to use and approach robotics differently to achieve their needs.
For instance, in a data-driven industry, the static robots that cannot communicate or process does not make sense. Since it's a data-driven industry, utilizing such technology in their robots will provide them with numerous benefits.
In an industry where robots and humans have to work together, human-robot collaboration makes much sense for the upcoming 360-degree approach to robotics. For instance, to perform a task like inspection of a faulty machine, robots can collect data from the air or the ground, while humans can analyze them and provide their insight. It becomes even more efficient with technologies like digital twins, AR, or VR.
3D models with digital twins can be much more efficient if industries integrate them with robotics. Automation becomes much closer while remote operations can thrive. With simulation technology, the training and testing of robots will become a digital endeavor rather than an inefficient, risky and expensive physical approach. Digital technology for robotics can enable rapid prototyping, higher form of product innovation, more advanced Research and Development (R&D), all the while remaining inexpensive, safe, efficient, and fast.
The 360-degree approach to robotics would also impact how we teach the robots as well. Technologies like offline robot programming (OLP) will enable robotics to evolve more rapidly. Offline robot programming replaces the traditional approach to teaching robots with Teach Pendants. Teaching pendants can be very slow, inefficient, and resource-consuming on top of being a significant cause of downtimes when it comes to teaching a robot. Pendants require robots to be out of production and in teaching mode the whole time during their programming. It increases downtime during the installation of robots and brings downtimes if the production house wants to upgrade the programming or coding.
But OLP replaces all that with a software model of teaching. The generation, testing, and verification of the teaching programs are possible through software simulations through OLP. OLP effectively eliminates the need to take out robots during its teaching process, allowing production to continue and robots to work even when training. OLP even opens a path for rapid maintenance, repair, and continuous upgrading of robots, all due to its teaching possible through software updates. Along with this, adopting simulation technology is another major win in terms of robot research and development. Simulations with AI can enable whole new ways of robot development, testing, and deployment. Pair this with technologies like Machine Learning, deep learning, and digital twins, AR and VR. Robots will then indeed be able to thrive. Companies like FS Studio that thrive in product innovation and advanced R&D technology can provide the industry with a much-needed push to propel themselves towards Industry 4.0. With over a decade’s collective knowledge and experience, FS Studio delivers a plethora of solutions for robotic technology and helps companies take a 360-degree approach to robotics.
Robots are complex pieces of machinery. Robots are engineering marvels that enable different components and systems to help with higher functions and features. These components and systems are usually very complex and require much research and development with time, resources, and specific skills. Furthermore, integrating these components is difficult, and the robot programming platform conquers it well.
With the advancement of technology, various systems, including sensors, processing power, battery power, storage systems, motors, actuator systems, and digital systems, are getting more modern and efficient. With the constant evolution of these components, they are increasingly getting complex. However, increasing complexity also increases the ease of use, efficiency, and capability of these components. Nevertheless, the integration of these components is the hardest part.
Robots with specific use cases, more movement points, locomotion capabilities, and robots that perform specific tasks with great accuracy and repetition are even more complex. For example, a moving robot or robot capable of movement, which is almost always the case, has to be aware of its surroundings, at least on a functional level, i.e., to perform its functions or to operate. Industrial robots are similar.
Read more: Why Use Offline Robot Programming Software And How to Get Started
Usually, industrial robots are movable hands/arms that extend out to perform specific tasks or robots that carries your stuff from one place to another or operate on niche needs of the industry. So naturally, with industrial robots, complexities are even higher since they have to be accurate and run without downtimes and be efficient in the production line.
Even a little downtime or failure can lead to huge losses and difficulties inside a production facility. Hence industrial robots are usually on the verge of sophistication and perform niche tasks.
Consequently, industries usually run production smoothly and efficiently, with the lowest downtimes ahead of the competition. Moreover, enterprises are also constantly evolving and optimizing themselves and often require upgrades and updates to keep themselves at the top of their game. Furthermore, since an industry production is continuously working, maintenance and repair operations should also be efficient and fast with minimum downtime.
With all this in mind, we can say that in an industry with a production base, the side that can optimize and efficiently run their production with minimum downtime and constant upgrades and evolutions become the winners. These sides can outperform the competition, yield the most profits, and come out at the top of their respective industries.
All this is possible if the robots used for production are efficient and require less downtime for installation during the show. Even maintenance and upgrade—the traditional method of using Teach Pendants brought revolution during its inception. But times have changed, and so has the technology around robot programming. Offline Robot Programming is the new pinnacle of robot programming and coding approach that has become so mature that it throws the old method of using teach pendants out of the competition.
Witnessing how the robot programming platform conquers, industries and industry experts consider it complex to integrate and challenge to learn. However, there still lies the misconception that only extensive production facilities of industries with deep pockets can afford to use Robot Programming Platforms. Unfortunately, that is not the case. Conversely, the Robot Programming Platform has come a long way in becoming the shiny new tool that is easy to use, adopt and base the industry upon rather than using Teach Pendants.
The Power of Robot Programming Platform
Robot Programming Platforms have their origin in simulation technology. Simulation, a technology introduced as early as 1947 by Thomas T. Goldsmith Jr. and Estle Ray Mann, enables a virtual platform to imitate an object or an environment, effectively retaining all their characteristics and behaviors with almost 100% accuracy. Thus, simulations can enact the subject (object or domain under imitation through simulation) properties and behavior even in different situations, conditions, and environments. Today, simulation technology has come so far that it can accurately simulate even complex mechanical and electric phenomena along with the capabilities to simulate real-world physics very accurately.
Real world-physics, mechanical and electrical interaction between objects is critical while developing and testing robots. Simulations today can simulate all these interactions very accurately. Simulation technology or Softwares can also simulate Electromagnetic phenomena along with fluid dynamics, air dynamics, gravity, collisions, etc., effectively with a high precision being virtually indistinguishable from the real world. It shows that simulating a whole robot with all its movements, behaviors, materials, processing, and other phenomena is possible. It’s very much possible and is already available. Companies like FS Studio are already providing Robotic Simulation Services with their deep knowledge and decades of experience to back it up.
We get the Robot Programming Platforms to pair this versatile and accurate simulation technology with robotic programming. Robot Programming Platforms not only enable virtual programming of robots without even taking it out of production, since the training process happens through software updates, but it is also possible to program robots while they are still operating in the production lines. Although, one may think this might invite huge problems and irregularities if the instructions are faulty. However, robotic programming platforms also provide features for testing and verification of these instructions virtually on a PC, even before uploading the education.
Read more: Robotic Simulation Software: How It Can Add Value to Manufacturers
The offline robotic programming platform conquers a massive leap in robotic research and development, especially in industrial and production setups. However, traditional methods of using Teach Pendants to train and program robots are very time-consuming, resource-hungry, and require an operator's presence at all times. On top of that, the robots should also be out of production to even begin their training. Then add all the cost of taking that robot out of production, setting it up for training, and waiting for the robot until it completes its training and again putting it back for production. Furthermore, add the downtime it causes to the whole production. The cost is just too much more relative to offline robotic programming.
Robot Programming Platforms enable OLP (Offline Programming), which is an “offline” approach to robot programming, i.e., away from the “online” process of Teach Pendants. OLP enables faster, more efficient, and cost-effective robot teaching or programming with robotic programming platforms capable of testing and verifying these programs virtually in a simulation environment. It enables a much wider road of possibilities and opportunities with even fewer obstacles and trenches on the way.
The industries with Robot Programming Platforms can even develop programs/codes for robots in a PC with virtual/digital twin of the robots without even being present. It allows for tremendous flexibility and overall freedom to configure, test, update and upgrade robotic programming very frequently. And all this happens without even a second of downtime; it all occurs virtually; it all happens digitally.
It again opens the road towards a higher level of automation. Robot Programming Platforms with Artificial Intelligence at their core can analyze data, more efficient solution generation, and real-time optimization of existing solutions. With the power of deep learning, even potential errors cannot hinder the production line since AI with deep understanding enables the detection of possible errors and faults beforehand. Even self-diagnosis and self-real-time optimization are all within natural reach through the use of Robot Programming Platforms.
All these advantages and benefits help a production site or industry enhance their existing robots and production lines to be more efficient, cost-effective, and capable of yielding high Return on Investment (ROI) if they adopt Robot Programming Platforms. Furthermore, with fewer downtimes, more frequent upgrades, and seamless integration of digital technology, Robot Programming Platforms conquer complex robotic problems and help surpass and outperform the competition.
For a smoother transition towards Robot Programming Platforms, industries can seek collaborations and partnerships with FS Studio companies that provide OLP and robotic simulation services solutions. Even the companies currently using Robot Programming Platforms can look for improvements towards newer state-of-the-art solutions that are proven to be more efficient, robust, and intelligent. Not only this, technologies like Artificial Intelligence (AI), Virtual Reality (VR), and Augmented Reality (AR) will also be essential in the future, not only from a technological standpoint but also from an industrial standpoint. FS Studio excels in these types of bleeding-edge technologies. They can not only provide companies and industries with these types of innovative technologies. Still, They can also equip them with the power of these technologies to propel them ahead towards a more prosperous future of prosperity. Simulation technology grows more powerful and capable, which we can already see from the example of how robot programming platform conquers complex parts, outperforming the competition.
Companies and industries from different fields are moving towards this technology rather than old and traditional approaches. As a result, the industry’s future is looking more probable to reach the next industrial shift, the Fourth Industrial Revolution, sooner than later. With this in hindsight, we can be confident that industries that can adapt and adopt digital technologies like Robotic Programming Platforms quickly are the industries that are incredibly likely to outperform their competition and thrive in the future.