HomeServicesZeroSimDigital TwinSimulation
BlogContact

The landscape of Robotics technology is evolving, pushing industries forward for a 360-degree approach to robotics. More so than before, today, robotic technology is progressing at a swift speed alongside its integration with technologies like Artificial Intelligence (AI), Simulation technology, Augmented Reality (AR), and Virtual Reality (VR). Robotics was always at the center of a future where industries are digital with automation at its core. However, industries that fully integrate AI and digital technology to enable automation with robots are still far away.

In the current world, car production and manufacturing is probably the industry with the highest level of robotic usage. One of the most prevalent uses of robotics and automation even in this industry is the Tesla manufacturing facility. Even though this is the case, Elon Musk, the CEO of  Tesla, admits that robots are tough to automate and efficiently run without advancing digital technologies like AI and more innovative technologies like the Offline Robot Programming Software Platform or Robotic Simulation Services.

However, with the advent of Industry 4.0, the next industrial revolution, we will see some industries take a 360-degree approach to robotics through digital technology. Robotics technology is a crucial part of this transformation. Hence, enterprises will have to change their traditional policy to robotics with a new innovative and modern digital strategy to keep up with the changing industry and competitors.

Read more: Top 3 Biggest Predictions for the Robotics Industry

With that said, industrial robotics is complex, in fact, very hard. With industries and production, the site the robots will have to work in is susceptible to all kinds of risks. These risks are not only limited to humans but also to the industry itself. Production environments generally contain various types of materials and substances that can create many unforeseen circumstances and problems. For example, rusts or corrosion of machine parts or robots, leaks, noise pollution, etc., are issues that the production will have to deal with almost regularly. Pair this with unforeseen problems in machines since they run all the time; industrial environments are very tough for robots to survive, which is why the 360-degree approach to robots is so important.

Not just the risks and problems for the robots, but the aftermaths of these problems and faults are more expensive to a production site. For instance, when a robot fails, or an installation of a new robot occurs, the actual production environment will probably suffer from its downtime. And industries do certainly not like downtimes. Downtimes lead to the stopping of whole production facilities and bar the production, resulting in the loss. Furthermore, this loss becomes more substantial if the materials or products that are not complete can go wrong. It will add the loss of materials and incomplete products to lower numbers of outgoing products from the factories.

360-Degree Approach To Robotics

Robotics in industries possesses more importance when it comes to error detection. Since production sites and factories can be dangerous and harmful for humans since they have to approach the machines to detect errors, it can be hazardous and even fatal in some cases. Hence, the emergence of drones and locomotive robots is rising in this department.  However, industries are still taking the old approaches to use robotics and digital technology.

Industries generally shape robots around the production and use cases in the production sites rather than the inverse. Although typically, enterprises approach robotics as only a medium to replace human resources either in potentially dangerous places or tasks that may not be possible for humans to perform, the 360-degree approach to robotics in the future would only develop the technology further. Instead of this, industries and production facilities should shape themselves around robotics. Of course, it does not mean changing the particular industries’ end goal towards robotics and its implementation. Instead, it means to shape the industry so that it embraces robotics and involves it in the actual process and communication of the production sites.

Read more: What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics

Usually, robots in industries are linear, i.e., they are put in place of a human to speed up a process/task with a set of inputs fed to them by the developers or operators. They only do or set out to do specific functions inside the production line.

For instance, we can use a robot to put a product inside a box, put product stickers in packages, and seal the box. However, these robots only perform one task, i.e., a robot for placing products in a box cannot close it or put product stickers on it. Therefore, it limits the opportunities and possibilities that robotics can unlock. For instance, with the integration of technologies like AI, robots can become more dynamic and a part of the actual production process rather than the production line.

With AI and technologies like simulation, innovations like Offline Robot Programming Software Platforms are possible. With this, robots become more helpful; they can even participate in production processes to make them brighter and effective. Moreover, With the possibilities of self real-time optimization and self-diagnosis possible, robots will become able to report errors or possible errors in the future and solve those problems faster than humans ever can. And the time essential for robots to process what went wrong and determine if a possible solution is tiny.

In comparison, humans must first come across the errors, either after the error has already happened or detect it beforehand. Then such errors have to go through actual experts and need proper analysis. Only after this, a solution can come up which can fix the problem. But, unfortunately, the developers or the debug team may misinterpret the answer due to insufficient data or enough time. Even during this time, though, the situation can escalate, sometimes even forcing a downtime in the production. But the upcoming 360-degree approach to robotics would change it all.

With the integration of robotics from the start, alongside the significant goals of the particular industry, the actual use cases of robotics with more comprehensive and newer possibilities can emerge. It will let the industries access the actual use case they want from robots and the robotic technology more appropriately instead of focusing on what robots can do afterward, limiting the robotic possibilities. Only after integrating robotics with the actual goal or vision can an industry properly access what they need from robotics and other complementary technologies.

360-Degree Approach To Robotics

Every industry has a different need. Along with this need, various production systems and methods emerge. Hence, every industry or company may need something different from robotic technology. Even without using the latest or bleeding-edge technology, a company may fulfill its actual needs, i.e., every company need not use them. Hence, every industry needs to use and approach robotics differently to achieve their needs.

For instance, in a data-driven industry, the static robots that cannot communicate or process does not make sense. Since it's a data-driven industry, utilizing such technology in their robots will provide them with numerous benefits.

In an industry where robots and humans have to work together, human-robot collaboration makes much sense for the upcoming 360-degree approach to robotics. For instance, to perform a task like inspection of a faulty machine, robots can collect data from the air or the ground, while humans can analyze them and provide their insight. It becomes even more efficient with technologies like digital twins, AR, or VR.

3D models with digital twins can be much more efficient if industries integrate them with robotics. Automation becomes much closer while remote operations can thrive. With simulation technology, the training and testing of robots will become a digital endeavor rather than an inefficient, risky and expensive physical approach. Digital technology for robotics can enable rapid prototyping, higher form of product innovation, more advanced Research and Development (R&D), all the while remaining inexpensive, safe, efficient, and fast.

The 360-degree approach to robotics would also impact how we teach the robots as well. Technologies like offline robot programming (OLP) will enable robotics to evolve more rapidly. Offline robot programming replaces the traditional approach to teaching robots with Teach Pendants. Teaching pendants can be very slow, inefficient, and resource-consuming on top of being a significant cause of downtimes when it comes to teaching a robot. Pendants require robots to be out of production and in teaching mode the whole time during their programming. It increases downtime during the installation of robots and brings downtimes if the production house wants to upgrade the programming or coding.

But OLP replaces all that with a software model of teaching. The generation, testing, and verification of the teaching programs are possible through software simulations through OLP. OLP effectively eliminates the need to take out robots during its teaching process, allowing production to continue and robots to work even when training. OLP even opens a path for rapid maintenance, repair, and continuous upgrading of robots, all due to its teaching possible through software updates. Along with this, adopting simulation technology is another major win in terms of robot research and development. Simulations with AI can enable whole new ways of robot development, testing, and deployment. Pair this with technologies like Machine Learning, deep learning, and digital twins, AR and VR. Robots will then indeed be able to thrive. Companies like FS Studio that thrive in product innovation and advanced R&D technology can provide the industry with a much-needed push to propel themselves towards Industry 4.0. With over a decade’s collective knowledge and experience, FS Studio delivers a plethora of solutions for robotic technology and helps companies take a 360-degree approach to robotics.

Robot programming software is a software solution that helps program or code a robot for its use or operation. Offline Robot Programming Software is also the same.

With the advancement of technology, Industry 4.0 is inching swiftly closer towards us faster than ever. Industry 4.0, also known as the Fourth Industrial Revolution, is the age of digitization where every industry has digital technology at its core. Consequently, digital technology is continuously evolving. Today, it almost seems inevitable for industries to adopt digital technology instead of relying on the traditional approach to industry, manufacturing, and product innovation. 

Robotic technology is also continuously evolving, with robots today more capable than ever in various fields and fronts, even unseen in the last decade. Moreover, with the complexity and sophistication of the robots increasing, they are constantly getting more and more complex to program, code, and even develop.

However, with increasing complexity in technology, it is also getting more and more adaptable, usable, accessible, and easy to use. It’s because newer bleeding-edge technological solutions help keep these complex problems and technology operable and functional with great ease of use and access. One of the similar problems regarding the increasing complexity is currently running alongside the robotic industry.

The Robotics industry is far more complex, risky, and resource-hungry than most technological undertakings out there. Due to the growing industry use cases for robot and their ability to fulfill these use cases. The nature of robotic technology is that numerous parts and systems converge together to form a single system unit that can perform various tasks and operations using these parts and systems.  Due to this nature, alongside the already complex building blocks of robots, i.e., the components and different systems, integrating these building blocks to work in an efficient cohesion with each other is a huge undertaking. 

Read more: Robotic Simulation Software: How It Can Add Value to Manufacturers

For easing the difficulty of integrating different parts and systems, many state-of-the-art industries and companies are starting to use robotic computer simulations. Simulations are a great innovation of digital technology that can help develop robotics through research, design, development, and production. Moreover, even after production, robotic software can now help robot operations, maintenance, and programming with different robot programming software solutions.

offline robot programming software

What is Offline Robot Programming Software?

Offline Robot Programming software is an “offline” approach to programming or coding a robot. This “offline” approach takes the usual method of programming a robot, i.e., teaching pendants away while doing the “teaching” part through the software remotely. However, this remote programming of the robot takes away the need of taking the physical robot out of production; instead can program and code robots virtually through software.

Teach pendants the most common interface to program an industrial robot. The device helps control an industrial robot remotely and teaches them to move or act in a certain way. For example, these devices can program or code the robots to follow a specific path or perform a certain action in a particular manner. These devices also allow the operator to control and work with these robots without being physically present or in tether connection with the robot. It means robot programmers or operators get to control the robots and “teach” them remotely. Technicians usually use these devices for testing or programming, or coding of industrial robots. Hence, teaching pendants are a crucial part of industrial robotics.

Read more: 12 Things to Consider When Exploring Offline Robot Programming Software Solutions

Offline Robot Programming Software replaces this teaching pendant with a more elegant and efficient solution with the power of software and simulation technology. Due to the control over robots with software since robotic OLP or Robotic Offline Programming allows for uploading programs and codes through software updates. Furthermore, software developers and robot operators can generate these programs and codes through robotic simulation software in a PC rather than using the robot physically.  OLP is, therefore, a more elegant, efficient, and more modern way to program industrial robots.

offline robot programming software

Why is Offline Robot Programming Software Important?

Even though these pendants are helpful and crucial to industrial robotic operations, they remain one of the bottlenecks of industrial robotics. Right off the bat, these devices are very slow and time-consuming. It's also very resource-consuming and requires personal at all times to operate. Furthermore, pendants also require the presence of the actual robot. They need the robot to be physically active in the teaching mode rather than doing other work during the teaching process, which is usually very long.

Hence, during teaching, the robot cannot be in production or be doing other functional tasks teaching process is very lengthy and tediously for the more complex robots with various joints or movement points and axes. The robot programmer has to program multiple joints and parts to code the robot manually, which is very time-consuming. The programmer will also have to take out the production robot during and until the teaching process. It will surely hamper the production line, and hence downtimes become longer.

 In any industrial setup, the production line is the most vital part of it. So much so that the whole manufacturing or production plant usually is based around it. Holding such importance, the optimization of production lines is a very crucial task in any industry. Downtimes, irregularities, or faults in the production lines and components around it means it directly hampers the sector. Moreover, machines like robots, especially the ones with automation, are very crucial in production lines. Hence, production lines must not stop nor deter it due to the robots.

However, with robotic OLP, industries can remove and eliminate all these disadvantages and bottlenecks from production. Instead of teaching these industrial robots online, offline programming eliminates the downtime for programming these robots completely. With this power in their hands, production lines can now completely get rid of time for programming. Instead, industries can use all these times in the actual production and get better returns.

With OLP, automation comes one step closer in production setups. Offline Robot Programming software enables rapid prototyping to test programs and codes before uploading them to the robots through simulation software. Furthermore, simulations are now very technologically smart such that they can simulate all robot parts, mechanics, systems, and movements. With such capability in hand, robot programming and even robot development and the building will become very easy. Due to this, testing, training, and evaluating robots virtually become very easy through OLP. Furthermore, it allows for error detection and verification of programs and robot capability to perform tasks and operations even before they are physically present.

Apart from this, Offline Robot Programming software also increases the productivity of production lines and robot operators and developers. Furthermore, OLP also provides greater profitability and has a better Return On Investment (ROI). Moreover, with OLP, one can test and prove new and better project or concept ideas in their quotation phase without investing in physical resources.

OLP allows for not only training and testing but also helps in maintenance and repairs too. OLP can help to track down potential faults and errors even before they occur or after they occur. It further makes the production efficiency and without any downtimes possibly in future too.

Not only is OLP advantageous and beneficial for regular industrial robots, but it's also essential and can be a boon for some industries that involve high risk. For example, industries like aviation, nuclear, automotive are very high-risk industries. Testing robots in these industries is a sensitive matter. Hence OLP is a requirement in these industries to train and test robots efficiently. Furthermore, without, OLP it is likely not even possible and feasible for industries like the space industry able to undertake projects and accomplish them.

Offline Robot Programming software is generally seen as a technology with high complexity and requiring very skillful personals. But that is not the case. Various companies like FS Studio provide solutions when it comes to offline robot programming. Companies like these can help industries get started with OLP and thrive on enabling substantial new possibilities and opportunities. With decades of experience and expertise in fields like Artificial Intelligence (AI), Virtual Reality (VR), Augmented Reality (AR), and Simulation technology, FS Studio, can provide companies with proper and efficient OLP solutions to propel their industries with more efficient, safe and effective production lines. With the advent of Industry 4.0 upon us, companies and industries now must look for better alternatives and modern approaches to the industry. Digitization of industries is the future where digital technology will be at the core of all industries with efficient and smart solutions. OLP with simulation technology enables rapid prototyping, testing, development, and superior research and development (R&D) along with faster and efficient programming or coding of industrial robots. Furthermore, industries can collaborate with different OLP providers to determine the best solution for their particular industry and production and help them integrate their existing robots and production for a more smooth transition towards Offline Robot Programming Software. 

chevron-down