From everyday market consumers to innovative technologies like robotic simulation services, offline robot programming, AI, AR, and VR, one thing is for sure, the robotic technology in the future will reach places and fields that are unforeseen even today. So, researchers and market enthusiasts have already started to predict what the industry will be like in the future. Hovering over thousands of ideas and scenarios, they have come down to these top three predictions for the robotic industry.
The Robotics industry is continuously evolving and growing. Researchers estimate that the market for the robotic industry globally in 2020 was more than 27 Billion US Dollars. This figure, however, has high expectations to grow astronomically to more than 74 Billion US Dollars by 2026. Researchers also pair this expectation with an annual growth rate of 17.45%, which again believes it will grow more.
The mainstream market also reflects this growing influence of robotics. The demand for robots and robotic technology is increasing in industries and factories, and regular consumer space. It shows that the robotic industry will become more and more mainstream with its uses to be making places even in fields that we cannot foresee today.
Read more: Are You Still Manually Teaching Robots?
With the COVID-19 pandemic, industry and consumer trends are shifting. During the pandemic, automation and remote operations experienced a boom that saw changing needs among manufacturers and consumers. In addition, people working from home, communication technology was on top of its game, with industries relating to remote communications increasing in value and influence.
It also brings together the sensing technology along it. With automation of tasks, even daily tasks being in demand, the robotic industry and the consumer industry focus on automation and sensing technology that enables it. Moreover, with automation comes data. Hence the data-driven industries like cloud technology are also increasing. Today’s data industry is so big that the tech giants of the current world are determinants of the amount of data they control and can process.
Another significant technology in communication, the 5G technology, is also a rave among consumers and industry alike. With this, the robotic industry is also taking advantage of 5G technology, with robots being more capable of high-speed communication and being more data-driven than ever.
We can compile all this information and trends of the current world into three things: Mainstream consumer space, Automation, and the data-driven industry and communication and sensing technology.
The demand for robotic and other state-of-the-art technology is increasing in the mainstream market. As a result, consumers are getting warier with these technologies and are willing to invest in them. It shows that the mainstream consumer market is undoubtedly aware that robotics technology is the future.
Furthermore, with or without the pandemic, communication and sensing technology is increasing in adoption and innovation, giving the green light to the predictions for the robotics industry. But due to the pandemic, it experienced a rapid increase in its adoption and development. Moreover, with people working from home and companies emphasizing remote working, communication technology is experiencing a high rise in demand. It is no different in robotic technology. Since robots integrate other technologies that are very advanced and highly complex, communication and networking will experience colossal development.
Consumers will expect their devices to be able to communicate with them more seamlessly. Furthermore, every use case of any robotic technology will want to fully utilize this advancement in communication technology to enable different possibilities. With high-speed communication possible, fleets of robots will communicate more efficiently and rapidly, creating even more use cases. Furthermore, Fleets of communicating robots capable of working together as a unit to complete specific tasks together will also be a high possibility with newer communication standards like 5G.
Along with communication comes sensor technology. With sensors getting smaller with more efficiency but less power, it will be possible to use them even in unforeseen places and use cases. Furthermore, with home security systems improving daily and technologies like computer vision and natural language progressing, sensors adept at these technologies will also enhance more. So naturally, the robotics industry will also take advantage of this.
Since the robotic industry is mainly based around sensors and their capabilities, with the increasing efficiency of sensors, it will be possible to include more significant, more capable sensors in any robot.
Read more: What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics
Predictions for the robotic industry are getting wilder; however, the accomplishments don’t fail to amaze us. Like the battery technology is improving further, and these sensors are getting more and more power-efficient, it is almost certain that we will use various kinds of sensors in different fields that are even seen as not possible today. For instance, take our phones, for example. Mobile technology is improving at such a fast pace that with each increasing year or two, people feel obliged to upgrade their phones to a newer model since they have started to feel old even if they are only a year or two old.
Since phones are getting smarter, so are the sensors inside them. A smartphone has numerous sensors, from cameras to accelerators to some phones even having LiDAR sensors in them. Compare this advancement to only a decade back, when phones with even a camera were tough to find. It acts as a testament to how far sensing technology has come and is improving at a fast pace. Of course, this also applies to robotic technology.
With sensors getting more efficient, smaller, more powerful while being more power-efficient, it will be possible for robot developers to pack more robust and accurate sensors in their robots. It will enable more probabilities. Furthermore, with sensors comes to their data. Sensors are devices that extract enormous amounts of data. However, to process and handle this, data-driven technologies are promptly evolving, if not even more.
The data-driven industry is evolving at a pace that exceeded the predictions for robotic industries made before the pandemic. With almost all kinds of technology now capable of dealing with data, manufacturers are constantly packing their products with more data-driven features, thanks to the efficiency of processing units getting better. The data industry is so important today that the top tech leaders of the current world are determinants of the efficient utilization of data technology; with devices capable of collecting large amounts of data, whether, through sensors or user interactions, data-driven applications are certainly thriving.
With data comes technologies like Machine Learning, Deep Learning, and Artificial Intelligence (AI) applications. With AI comes the automation of the industry. The Robotics industry is undoubtedly at the forefront of automation technology, with humans having a vision of automated robots way back. However, what’s even more exciting about this data-driven technology is that it helps a robot have practical and smart applications and even helps to develop and build robots.
Innovative technologies like Simulations, AR, and VR will thrive under the data-driven industry after all these technologies rely heavily upon data. But with data-driven technology developing at a rapid rate, these technologies are also improving very fast. Moreover, simulations are now capable of imitating real-world environments and phenomena with very accurate physics engines. Robotic development is also possible with these technologies, especially since the robotic industry is a costly industry due to its high risk for humans and economic benefits and resource consumption.
Robotic research and development usually require many resources and skills willing to take a risk with high-value components, and research is for waste. Furthermore, since simulations and digital technologies like Robotic Simulation Services or Offline Robot Programming Software Platforms are mainstream, the future robotic industry will depend on these technologies.
With various advantages like rapid prototyping, faster and efficient designing process, fewer resources, and fewer requirements of highly skilled personnel, simulation technology will thrive in the future for the robotic industry. The robotic industry will design, test, develop, and research robotics inside simulations with technologies like digital twins.
The predictions for the robotic industry also indicate that the industries and production sites will be using technologies like Offline Robot Programming Platforms for teaching and programming robots, resulting in fewer downtimes and progressing more smoothly. It is because the robotic industry will have its core lying in digital technologies like these.
Robots of the future will also focus more on the human-robot collaboration where robots will be more capable of working together with humans. For this, integrating technologies like AR and VR in robotics and AI will be crucial. AR and VR will allow the robotic industry to venture towards complete digital premises along with remote technology.
Compiling all this information and trends in the world today, we can be sure that the future of the robotic industry looks to be very promising. From everyday market consumers to innovative technologies like robotic simulation services, offline robot programming, AI, AR, VR, one thing is for sure, the robotic technology in the future will reach places and fields that are unforeseen even today. With this, the top 3 most significant predictions for the robotic industry are:
Robots are complex pieces of machinery. Robots are engineering marvels that enable different components and systems to help with higher functions and features. These components and systems are usually very complex and require much research and development with time, resources, and specific skills. Furthermore, integrating these components is difficult, and the robot programming platform conquers it well.
With the advancement of technology, various systems, including sensors, processing power, battery power, storage systems, motors, actuator systems, and digital systems, are getting more modern and efficient. With the constant evolution of these components, they are increasingly getting complex. However, increasing complexity also increases the ease of use, efficiency, and capability of these components. Nevertheless, the integration of these components is the hardest part.
Robots with specific use cases, more movement points, locomotion capabilities, and robots that perform specific tasks with great accuracy and repetition are even more complex. For example, a moving robot or robot capable of movement, which is almost always the case, has to be aware of its surroundings, at least on a functional level, i.e., to perform its functions or to operate. Industrial robots are similar.
Read more: Why Use Offline Robot Programming Software And How to Get Started
Usually, industrial robots are movable hands/arms that extend out to perform specific tasks or robots that carries your stuff from one place to another or operate on niche needs of the industry. So naturally, with industrial robots, complexities are even higher since they have to be accurate and run without downtimes and be efficient in the production line.
Even a little downtime or failure can lead to huge losses and difficulties inside a production facility. Hence industrial robots are usually on the verge of sophistication and perform niche tasks.
Consequently, industries usually run production smoothly and efficiently, with the lowest downtimes ahead of the competition. Moreover, enterprises are also constantly evolving and optimizing themselves and often require upgrades and updates to keep themselves at the top of their game. Furthermore, since an industry production is continuously working, maintenance and repair operations should also be efficient and fast with minimum downtime.
With all this in mind, we can say that in an industry with a production base, the side that can optimize and efficiently run their production with minimum downtime and constant upgrades and evolutions become the winners. These sides can outperform the competition, yield the most profits, and come out at the top of their respective industries.
All this is possible if the robots used for production are efficient and require less downtime for installation during the show. Even maintenance and upgrade—the traditional method of using Teach Pendants brought revolution during its inception. But times have changed, and so has the technology around robot programming. Offline Robot Programming is the new pinnacle of robot programming and coding approach that has become so mature that it throws the old method of using teach pendants out of the competition.
Witnessing how the robot programming platform conquers, industries and industry experts consider it complex to integrate and challenge to learn. However, there still lies the misconception that only extensive production facilities of industries with deep pockets can afford to use Robot Programming Platforms. Unfortunately, that is not the case. Conversely, the Robot Programming Platform has come a long way in becoming the shiny new tool that is easy to use, adopt and base the industry upon rather than using Teach Pendants.
The Power of Robot Programming Platform
Robot Programming Platforms have their origin in simulation technology. Simulation, a technology introduced as early as 1947 by Thomas T. Goldsmith Jr. and Estle Ray Mann, enables a virtual platform to imitate an object or an environment, effectively retaining all their characteristics and behaviors with almost 100% accuracy. Thus, simulations can enact the subject (object or domain under imitation through simulation) properties and behavior even in different situations, conditions, and environments. Today, simulation technology has come so far that it can accurately simulate even complex mechanical and electric phenomena along with the capabilities to simulate real-world physics very accurately.
Real world-physics, mechanical and electrical interaction between objects is critical while developing and testing robots. Simulations today can simulate all these interactions very accurately. Simulation technology or Softwares can also simulate Electromagnetic phenomena along with fluid dynamics, air dynamics, gravity, collisions, etc., effectively with a high precision being virtually indistinguishable from the real world. It shows that simulating a whole robot with all its movements, behaviors, materials, processing, and other phenomena is possible. It’s very much possible and is already available. Companies like FS Studio are already providing Robotic Simulation Services with their deep knowledge and decades of experience to back it up.
We get the Robot Programming Platforms to pair this versatile and accurate simulation technology with robotic programming. Robot Programming Platforms not only enable virtual programming of robots without even taking it out of production, since the training process happens through software updates, but it is also possible to program robots while they are still operating in the production lines. Although, one may think this might invite huge problems and irregularities if the instructions are faulty. However, robotic programming platforms also provide features for testing and verification of these instructions virtually on a PC, even before uploading the education.
Read more: Robotic Simulation Software: How It Can Add Value to Manufacturers
The offline robotic programming platform conquers a massive leap in robotic research and development, especially in industrial and production setups. However, traditional methods of using Teach Pendants to train and program robots are very time-consuming, resource-hungry, and require an operator's presence at all times. On top of that, the robots should also be out of production to even begin their training. Then add all the cost of taking that robot out of production, setting it up for training, and waiting for the robot until it completes its training and again putting it back for production. Furthermore, add the downtime it causes to the whole production. The cost is just too much more relative to offline robotic programming.
Robot Programming Platforms enable OLP (Offline Programming), which is an “offline” approach to robot programming, i.e., away from the “online” process of Teach Pendants. OLP enables faster, more efficient, and cost-effective robot teaching or programming with robotic programming platforms capable of testing and verifying these programs virtually in a simulation environment. It enables a much wider road of possibilities and opportunities with even fewer obstacles and trenches on the way.
The industries with Robot Programming Platforms can even develop programs/codes for robots in a PC with virtual/digital twin of the robots without even being present. It allows for tremendous flexibility and overall freedom to configure, test, update and upgrade robotic programming very frequently. And all this happens without even a second of downtime; it all occurs virtually; it all happens digitally.
It again opens the road towards a higher level of automation. Robot Programming Platforms with Artificial Intelligence at their core can analyze data, more efficient solution generation, and real-time optimization of existing solutions. With the power of deep learning, even potential errors cannot hinder the production line since AI with deep understanding enables the detection of possible errors and faults beforehand. Even self-diagnosis and self-real-time optimization are all within natural reach through the use of Robot Programming Platforms.
All these advantages and benefits help a production site or industry enhance their existing robots and production lines to be more efficient, cost-effective, and capable of yielding high Return on Investment (ROI) if they adopt Robot Programming Platforms. Furthermore, with fewer downtimes, more frequent upgrades, and seamless integration of digital technology, Robot Programming Platforms conquer complex robotic problems and help surpass and outperform the competition.
For a smoother transition towards Robot Programming Platforms, industries can seek collaborations and partnerships with FS Studio companies that provide OLP and robotic simulation services solutions. Even the companies currently using Robot Programming Platforms can look for improvements towards newer state-of-the-art solutions that are proven to be more efficient, robust, and intelligent. Not only this, technologies like Artificial Intelligence (AI), Virtual Reality (VR), and Augmented Reality (AR) will also be essential in the future, not only from a technological standpoint but also from an industrial standpoint. FS Studio excels in these types of bleeding-edge technologies. They can not only provide companies and industries with these types of innovative technologies. Still, They can also equip them with the power of these technologies to propel them ahead towards a more prosperous future of prosperity. Simulation technology grows more powerful and capable, which we can already see from the example of how robot programming platform conquers complex parts, outperforming the competition.
Companies and industries from different fields are moving towards this technology rather than old and traditional approaches. As a result, the industry’s future is looking more probable to reach the next industrial shift, the Fourth Industrial Revolution, sooner than later. With this in hindsight, we can be confident that industries that can adapt and adopt digital technologies like Robotic Programming Platforms quickly are the industries that are incredibly likely to outperform their competition and thrive in the future.