HomeServicesZeroSimDigital TwinSimulation
BlogContact

From everyday market consumers to innovative technologies like robotic simulation services, offline robot programming, AI, AR, and VR, one thing is for sure, the robotic technology in the future will reach places and fields that are unforeseen even today. So, researchers and market enthusiasts have already started to predict what the industry will be like in the future. Hovering over thousands of ideas and scenarios, they have come down to these top three predictions for the robotic industry.

The Robotics industry is continuously evolving and growing. Researchers estimate that the market for the robotic industry globally in 2020 was more than 27 Billion US Dollars. This figure, however, has high expectations to grow astronomically to more than 74 Billion US Dollars by 2026. Researchers also pair this expectation with an annual growth rate of 17.45%, which again believes it will grow more.

The mainstream market also reflects this growing influence of robotics. The demand for robots and robotic technology is increasing in industries and factories, and regular consumer space. It shows that the robotic industry will become more and more mainstream with its uses to be making places even in fields that we cannot foresee today.

Read more: Are You Still Manually Teaching Robots?

With the COVID-19 pandemic, industry and consumer trends are shifting. During the pandemic, automation and remote operations experienced a boom that saw changing needs among manufacturers and consumers. In addition, people working from home,  communication technology was on top of its game, with industries relating to remote communications increasing in value and influence.

It also brings together the sensing technology along it. With automation of tasks, even daily tasks being in demand, the robotic industry and the consumer industry focus on automation and sensing technology that enables it. Moreover, with automation comes data. Hence the data-driven industries like cloud technology are also increasing. Today’s data industry is so big that the tech giants of the current world are determinants of the amount of data they control and can process.

Another significant technology in communication, the 5G technology, is also a rave among consumers and industry alike. With this, the robotic industry is also taking advantage of 5G technology, with robots being more capable of high-speed communication and being more data-driven than ever.

We can compile all this information and trends of the current world into three things: Mainstream consumer space, Automation, and the data-driven industry and communication and sensing technology.

The demand for robotic and other state-of-the-art technology is increasing in the mainstream market. As a result, consumers are getting warier with these technologies and are willing to invest in them. It shows that the mainstream consumer market is undoubtedly aware that robotics technology is the future.

Furthermore, with or without the pandemic, communication and sensing technology is increasing in adoption and innovation, giving the green light to the predictions for the robotics industry. But due to the pandemic, it experienced a rapid increase in its adoption and development. Moreover, with people working from home and companies emphasizing remote working, communication technology is experiencing a high rise in demand. It is no different in robotic technology. Since robots integrate other technologies that are very advanced and highly complex, communication and networking will experience colossal development.

predictions for the robotics industry

Consumers will expect their devices to be able to communicate with them more seamlessly. Furthermore, every use case of any robotic technology will want to fully utilize this advancement in communication technology to enable different possibilities. With high-speed communication possible, fleets of robots will communicate more efficiently and rapidly, creating even more use cases. Furthermore, Fleets of communicating robots capable of working together as a unit to complete specific tasks together will also be a high possibility with newer communication standards like 5G.

Along with communication comes sensor technology. With sensors getting smaller with more efficiency but less power, it will be possible to use them even in unforeseen places and use cases. Furthermore, with home security systems improving daily and technologies like computer vision and natural language progressing, sensors adept at these technologies will also enhance more. So naturally, the robotics industry will also take advantage of this.

Since the robotic industry is mainly based around sensors and their capabilities, with the increasing efficiency of sensors, it will be possible to include more significant, more capable sensors in any robot.

Read more: What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics

Predictions for the robotic industry are getting wilder; however, the accomplishments don’t fail to amaze us. Like the battery technology is improving further, and these sensors are getting more and more power-efficient, it is almost certain that we will use various kinds of sensors in different fields that are even seen as not possible today. For instance, take our phones, for example. Mobile technology is improving at such a fast pace that with each increasing year or two, people feel obliged to upgrade their phones to a newer model since they have started to feel old even if they are only a year or two old.

Since phones are getting smarter, so are the sensors inside them. A smartphone has numerous sensors, from cameras to accelerators to some phones even having LiDAR sensors in them.  Compare this advancement to only a decade back, when phones with even a camera were tough to find. It acts as a testament to how far sensing technology has come and is improving at a fast pace. Of course, this also applies to robotic technology.

With sensors getting more efficient, smaller, more powerful while being more power-efficient, it will be possible for robot developers to pack more robust and accurate sensors in their robots. It will enable more probabilities. Furthermore, with sensors comes to their data. Sensors are devices that extract enormous amounts of data. However,  to process and handle this, data-driven technologies are promptly evolving, if not even more.

The data-driven industry is evolving at a pace that exceeded the predictions for robotic industries made before the pandemic. With almost all kinds of technology now capable of dealing with data, manufacturers are constantly packing their products with more data-driven features, thanks to the efficiency of processing units getting better. The data industry is so important today that the top tech leaders of the current world are determinants of the efficient utilization of data technology; with devices capable of collecting large amounts of data, whether, through sensors or user interactions, data-driven applications are certainly thriving.

With data comes technologies like Machine Learning, Deep Learning, and Artificial Intelligence (AI) applications. With AI comes the automation of the industry. The Robotics industry is undoubtedly at the forefront of automation technology, with humans having a vision of automated robots way back. However, what’s even more exciting about this data-driven technology is that it helps a robot have practical and smart applications and even helps to develop and build robots.

predictions for the robotics industry

Innovative technologies like  Simulations, AR, and VR will thrive under the data-driven industry after all these technologies rely heavily upon data. But with data-driven technology developing at a rapid rate, these technologies are also improving very fast. Moreover, simulations are now capable of imitating real-world environments and phenomena with very accurate physics engines. Robotic development is also possible with these technologies, especially since the robotic industry is a costly industry due to its high risk for humans and economic benefits and resource consumption.

Robotic research and development usually require many resources and skills willing to take a risk with high-value components, and research is for waste. Furthermore, since simulations and digital technologies like Robotic Simulation Services or Offline Robot Programming Software Platforms are mainstream, the future robotic industry will depend on these technologies.

With various advantages like rapid prototyping, faster and efficient designing process, fewer resources, and fewer requirements of highly skilled personnel, simulation technology will thrive in the future for the robotic industry. The robotic industry will design, test, develop, and research robotics inside simulations with technologies like digital twins.

The predictions for the robotic industry also indicate that the industries and production sites will be using technologies like Offline Robot Programming Platforms for teaching and programming robots, resulting in fewer downtimes and progressing more smoothly. It is because the robotic industry will have its core lying in digital technologies like these.

Robots of the future will also focus more on the human-robot collaboration where robots will be more capable of working together with humans. For this, integrating technologies like AR and VR in robotics and AI will be crucial. AR and VR will allow the robotic industry to venture towards complete digital premises along with remote technology.

Compiling all this information and trends in the world today, we can be sure that the future of the robotic industry looks to be very promising. From everyday market consumers to innovative technologies like robotic simulation services, offline robot programming, AI, AR, VR, one thing is for sure, the robotic technology in the future will reach places and fields that are unforeseen even today. With this, the top 3 most significant predictions for the robotic industry are:

  1. The general consumer market will adopt the robotic industry. With the increasing popularity of robotic products and machines among common consumers, the robotic industry will adopt this consumer space to produce robotic technology even for common usage. Enterprises will also adopt robotic technology more widely.
  2. With the increasing evolution of sensing and communication technology, the robotic industry will utilize this development to improve its reach further. The robotic industry will use more efficient, robust, and capable sensors to power more use cases. Communication technology will also power the future of robotics. With this, data-driven robotic technology will be the future.
  3. The predictions for the robotics industry also say that the future will see the adoption of digital technologies like Robotic Simulation Services, AR, VR, and Offline Programming Platforms. Thus, the robotic industry will move from the traditional approach towards a more digital approach while enabling rapid development and improvement in robotic technology. Furthermore, automation will be the top-of-the-line demand, and hence robotic industry will see a massive push towards automation.

The advent of next-generation technologies like Simulations, AR, VR, and AI continues to grow rapidly. With continuous evolution in their advancement and increasing accessibility, they can exponentially add value to manufacturers. Hence, influencing industries across the globe to adopt these technologies at an increasing rate. For example, artificial intelligence with immersive technologies like AR and VR swiftly transforms manufacturing processes and product development. But, on the other hand, robotic technology redefines the possibilities and opportunities in various fields and industries.

The increasing sophistication of robotic technology is visible due to giant leaps in the capabilities of current robotic systems. With technology evolving swiftly, the industry is also adopting newer technologies in its manufacturing and product development processes. One of these newer technologies the industry is moving towards is simulation technology.

With the dawn of Industry 4.0 upon us, industries undoubtedly need to advance towards digital transformation. In this advancement, simulation technology is a boon for manufacturers. Although simulation technology is not new due to its rapid evolution in recent years, it is expanding its horizon of possibilities and opportunities. Robotic technology is one of the unknown frontiers of simulation tech.

Read more: 12 Things to Consider When Exploring Offline Robot Programming Software Solutions

Simulation software has the power to enable rapid prototyping, testing, and development of product development processes and R&D technology. Computer simulation is one of the vital tools for industries like robotic development and manufacturing. With the crucial role of robots in the manufacturing industry, the development and advancement of robotic technology are significant for the whole manufacturing industry.

Why Simulation Softwares in Robot Development?

Robot research and development, along with its design and production, is very complex. It is not just because of the sophistication of the technologies in a robot. But also because of economic reasons and risks in robotic development. They also have to add value to the manufacturers as well.

Robots are usually expensive pieces of machinery. Industrial and manufacturing robots are costly due to the niche application following the niche research and development requirement. Moreover, even general robot design and development require massive resources, cost, time, and multidisciplinary skills. Furthermore, prototyping robots for testing, evaluation, and assessment need equally, if not more, resources, time, cost, and abilities. Add this with risks present in the real world, and robotic development truly becomes a huge undertaking.

Computer simulations for robotic development can solve all these problems. Computer simulations offer efficient and elegant solutions that are more cost-effective and less time-consuming. Any computer simulation software usually provides a 3D digital space to test and develop a product. Similarly, robot simulation software offers different environments and tools in a digital 3D area to test, run, research, evaluate and develop a robot.

Add Value to Manufacturers

Real robots in the real world consist of parts like motors, batteries, joints, arms, sensors, actuators, controllers, and other mechanical parts. Furthermore, robots also consist of networking, processing, and data handling components to analyze data and communicate. Apart from this, some robots also need to be smart and capable of making various decisions in real-time to add value to manufacturers. Consequently, due to these causes, robots in the real world are very complex and expensive. 

However, robotic simulation software provides all these tools, components, and parts in its digital space. Due to the high advancement of simulation software, today, simulation software can simulate all these parts and subsequently a fully functional robot that can run/operate in different conditions and environments. One just has to bring these parts and models together digitally. The simulation software also supports the design and development of these parts and models digitally. Hence, developing or putting together a robot in a simulation environment is very quickly relative to the real world.

Read more: Computer Simulation of Human Robots Collaboration in the Industries

Moreover, just like in the real world, robotic simulation software also allows for the testing and evaluation robots in different environments and conditions. Simulation software can simulate fluid and air dynamics, collisions, and many more physical, real-world phenomena with very accurate and modern physics that reflect real-world physics. All this happens similarly to the real world, except the simulations are fast and easy to develop and do not have to suffer huge risks and significant economic setbacks.

With computer simulations on hand, the risks and costs in association with robot development become redundant. It also ensures that the developers do not exhaust their time worrying about resources and cost but instead focus on the actual robot development. It also provides the developers with flexibility and space to develop the best robot for their requirements without compromising developmental risks and costs.

How they Add Value to Manufacturers

With the vast advantages of using simulation software in robotic research and development, manufacturers are beginning to realize the potential it carries. Furthermore, minimizing risk in robot development in manufacturing and factories also means developing robots with better design that suits the requirements to a far greater degree. As a result, companies or factories using robots in various product manufacturing processes can undoubtedly reap the benefits of better and cost-effective robotic solutions, which is possible due to robotic simulation software.

Proper simulation software can ensure the best systems for different applications and use cases. With rapid design and development in the card, even if a system is not up to the mark, companies can simply re-design it in the digital form with much lower costs and resources. In addition, with computing systems becoming cheaper and efficient, simulations can now help manufacturers build their robotic solutions to stay competitive in the market with new and better solutions.

There are numerous ways the robotic simulation software can add value to manufacturers, for example, cohesion with better designs, processes, and efficient investment.

With manufacturers expanding their product spectra to a wide range, robotic systems in use are not always general robots but tailored with specific needs and requirements in play. For instance, a car manufacturing company cannot automate the assembly line process without the same robots. Development of robots enters completion with niche use cases in mind. One robot installs engines while another robot paints the car; another robot detects flaws in the painting. Another installs wheels, another lifts machines before installation, and so on. Each different use case requires another robot.

Hence in this scenario, designing different robots for different use cases in the real world is very expensive as well as being time and resources consuming. However, creating robots for other use cases is much simpler, more accessible, faster, and cost-effective through simulation software. Consequently, robotic simulation software can also help manufacturers to customize and fine-tune robots according to their needs.  Moreover, such systems can undergo design and development to seamlessly fit into their existing facilities and systems quickly relative to traditional methods.

Automation also becomes much simpler with the capability of simulation software to test automation and smart technologies in a full-blown manner even before the final design is ready. Furthermore, simulation consisting of accurate and minute details add value to manufacturers, helping them configure their automation system so that the resultant robotic systems can meet their goals. However, manufacturers usually have to take significant risks for proof of design and automation process verification without simulation systems.

Due to all these advantages, simulation systems can return great results on the manufacturer’s investment. Furthermore, simulation software capable of self-diagnosis and automatic error reporting ensures that the finished designs and products are free of errors and potential flaws. It also ensures that the robotic simulation systems function with precision with known efficiencies in different environments and conditions. Thus, it helps manufacturers get maximum returns on their investment.

Moreover, the investment also becomes largely more safe and secure relative to the investment in traditional approaches. Furthermore, with the successful design and development of robots or systems meeting all requirements and needs beforehand, manufacturers can ensure further lucrative benefits and returns. Eventually, the end goal of manufacturers is to get returns from the end product. It largely depends upon the manufacturing process, which depends on the systems and procedures, including robotic systems used for manufacturing.

Hence, ultimately a successful result is a massive win for manufacturers. Robotic simulation software ensures that this result is successful and that the manufacturers get there with much lower costs, resources, time, and skills.

Add Value to Manufacturers

Conclusion

Industry 4.0 or the Fourth Industrial Revolution (FIR) is all about the digital transformation of enterprises. With Industry 4.0 approaching more closely than ever before, industries and manufacturers must keep up with advancements in technologies like simulation and artificial intelligence, AR, and VR. While it may seem that the transition to digital technology and simulations for product innovation, R&D, and robotic development is complex, the result in-store has enormous benefits with lucrative returns.

Hence, companies like FS Studio are working hard in these innovative technologies to ensure that manufacturers can experience a smooth transition to Industry 4.0. For example, ZeroSim, a technology in development and service by FS Studio, is a robotic simulation software technology built on Unity3D, a game engine, and ROS (Robotics Operating System). It provides a multitude of tools for building robots and simulation environments in Unity to interface with ROS.

Technologies like these add value to manufacturers, making robotic simulations faster, easier, and hassle-free to use for manufacturers. It also ensures that manufacturers can easily leverage the lofty benefits of robotic simulation software to transition themselves towards the next industrial revolution.

chevron-down