Challenges of creating digital twins are increasing exponentially, especially with the advancement of technologies like simulation, modeling, and data analysis, digital twins of objects and environments are increasingly becoming more accessible and adaptable across various industries. Furthermore, with the integration of Artificial Intelligence with Machine Learning & Deep Learning, digital twins will transform industries across different spectrums, including the manufacturing industry.
The Fourth Industrial Revolution, or FIR or Industry 4.0 in short, is the automation of traditional manufacturing, production & other related industries with the digital transformation of traditional practices through modern technologies. Thus, industry 4.0 will be the age of digital technologies. Machine to Machine communication (M2M) and the Internet of Things (IoT) will work together to enable automation, self-monitoring, real-time optimization, and the production industry’s revolution.
Digital twins will be at the forefront of Industry 4.0. With its power of rapid designing & development, iteration & optimization in almost every engineering process & practice, digital twins will enable new opportunities and possibilities. In addition, digital twins will transform various manufacturing & production processes, drastically reduce time & costs, optimize maintenance and reduce downtime.
While digital twin technology is not entirely new, its growth and adoption are skyrocketing across various industries in recent years, while the challenges of creating digital twins are also rising. As a result, the valuation of the global digital twin market was sitting at 5.4 billion US Dollars in 2020. Furthermore, although its market was experiencing a slump in 2020 due to the COVID-19 pandemic, it will undoubtedly recover and experience exponential growth again. Consequently, researchers expect that the global digital twin market will reach 63 billion US Dollars by 2027 while rising at the growth rate of 42.7% annually.
Over the last decade, the evolution of the manufacturing and production industry has been mainly focusing on reducing costs, increasing quality, becoming flexible, and reaching customer needs across the supply chain. The manufacturing industry is adopting different modern technologies to achieve these goals. Millennium digital technologies have also been part of this technology stack due to the innovation and opportunities it brings to the table.
Different companies and organizations are using twin tech accordingly in different scales and nature. Due to this, the technology in use varies across the industry, such that some industries use the latest bleeding-edge systems while others use legacy and proven techniques. Companies generally use the latest tech when it becomes available to use the latest features and functionalities. On the other hand, proven legacy systems are in use due to their stability and ease of use.
Read more: How Are Industries Creating New Opportunities By Combining Simulations and AI
Likewise, different uses of twinning sims in various industries possess other challenges. Apart from this, integration technologies like the Internet of Things (IoT), cloud, big data, and different approaches to digital twin integration will only increase the challenges for digital twins in terms of the sheer complexity of implementation. However, this also presents an enormous opportunity for industries to adopt and align these technologies to suit different needs to solve these complexities and challenges. Subsequently, companies like FS Studio solve the challenges of creating digital twins, providing a platform for the manufacturers or companies to work on without dealing with complexities.
Generally, the goal of any twin manufacturing is to create a twin or model of a real-world object in digital form. Furthermore, the aim is to make indistinguishable virtual digital twins from the actual physical object. Therefore, from the perspective of a manufacturer or a product development company, a digital twin technology will create an actual physical product experience in digital form. Hence, a digital twin for a product, object, or environment will consistently provide information and expertise throughout the whole product cycle.
A virtual twin can also serve companies for feedback collection alignment, useful for the product or the design team. Results from various tests may provide results that can be useful too. The design/engineering/manufacturing team can compile this information, feedback, and results for multiple purposes from the digital twin model. Furthermore, this compilation can also provide additional insights into the product, which can be very useful to tweak, change or even redesign the product entirely. This digital approach will consume much fewer resources, effort, and costs than the traditional physical approach. Moreover, these changes will also be reflected on the twin's systems instantly as the teams make these changes. This will ultimately allow crews to perform true real-time optimization of a product or a manufacturing process.
It will drastically improve the efficiency of designing and developing a product or a process. In addition, digital twins also enable higher flexibility across the overall design and development process. Furthermore, this flexibility comes at a lower cost and additional agility in manufacturing or product development. Hence, digital twin technology becomes very appealing for manufacturers and product developers due to these advantages and benefits.
One of the main challenges of creating digital twins remains to be the convergence of existing data, processes, and products in the digital form to be easily accessible and usable for the current or future teams in involvement. Moreover, such convergence may also change a company’s complete organizational structure from their R&D technology and product innovation to sales and promotion. Furthermore, incorporating technologies like IoT, the actual development of 2D or 3D models & simulations, and data analysis for consistent process, quality & authentic experience of the product remains a very complex process.
Apart from this, the actual use of digital twins created is also another challenge. The infrastructure and platform needed to use such digital twins are also essential, albeit complex, things to build. For example, suppose a team can create a car’s digital twin for a car manufacturer company. But problems with digital twins are that there is no actual use of the digital twin except for visualizing the vehicle. Even for proper visualization of the car across teams, different platforms and tools are necessary to often serve niche use cases of the company.
For instance, a car company needs a motor, brake, acceleration, air dynamics, and other niche simulations for the digital twin of their car. The technology stack should be able to perform various maneuvers a vehicle performs on the road. Aerodynamics and gravity simulation is a massive deal for car manufacturers. Integrating these simulations is also a monumental task.
Read more: Simulation in Digital Twin for Aerospace, Manufacturing, and Robotics
Along with this, for the actual process of testing and developing products, the platform has to simulate various objects, environments, and conditions necessary for such functions. Alongside this, the platform should also be able to report errors & statistical data on simulations running while constantly monitoring and diagnosing the product during its testing or development. Collaboration between team members on the platform is also necessary for a large-scale company. Integration of Artificial Intelligence and technologies like Machine Learning and Deep Learning is also a very challenging task to accomplish.
Digital twin technology is also often associating itself with complementary technologies like Virtual Reality (VR) and Augmented Reality (AR). The use of VR and AR in a digital twin platform will upgrade the realism and accuracy of the product experience. With realistic simulations and modeling in VR and AR’s capability to enhance a product experience, the 4.0 industry will incorporate these technologies at the forefront with digital twin technology, increasing the challenges of creating digital twins. Alongside this, integrating the digital twin with the actual physical manufacturing process is also a huge challenge.
Although companies will have to adopt this new industrial revolution 4.0 with digital twin-driven smart manufacturing, the overall process will not be that complex. The hard part is the convergence of different technologies to enable a platform for generating this digital twin and integrating it with the actual physical process in product development or manufacturing. However, since the digital twin simulation accurately represents the actual physical product, the product/manufacturing team will have almost no difficulty incorporating this digital twin tech in their physical process.
Therefore, companies like FS Studio help product developers and manufacturers to focus only on product development and design rather than the process of adoption of the digital twin. While different industries are transitioning towards Industry 4.0 technologies, various platforms and solutions establish themselves as leaders in cutting-edge technologies like the digital twin model with AR VR to eliminate the complexities present while the transition happens. It will help the companies and organizations focus on their primary and core goals instead of shifting their resources and concentrate on their growth to the next industrial revolution.
Realization of challenges for the convergence of technologies like IoT, design, and generation of 2D or 3D models & simulation and analysis of existing data remains. With this, the incorporation of Artificial Intelligence, Machine Learning, and data analysis also pose challenges regarding automation, self-monitoring, and real-time optimization. Subsequently, corporations and manufacturers moving towards Industry 4.0 must place digital twin technology at its core.
It will help companies and organizations transition smoothly towards the industry 4.0 revolution, which incorporates product development and digital transformation. With the power of rapid design and development, new production and R&D innovation will take over the industry, reducing the challenges of creating digital twins in the transition to industry 4.0. Subsequently, with digital twin technology, industries across the spectrum will be growing exponentially in their move towards the next industrial revolution.