Computer Simulation of Human Robots Collaboration in the industries is closer than we think. The current industry is moving towards the Fourth Industrial Revolution (FIR). FIR or Industry 4.0 is the digital transformation of the existing industries to enable new ways of manufacturing & production with automation at its core. The digital world will effectively meet the real world at this stage, integrating them on a level never seen before. Human Robots collaboration is one of the significant parts of this integration. With transformative technologies like computer simulations, AR, VR, and digital twins, cooperation among humans and robots is an absolute path that the next generation of technology will take.
Computer simulation is a very crucial tool for industries like robotic research and engineering. With the increasing adoption of computer simulation in various industries, simulations are rapidly becoming a vital part of product innovation and R&D technology. It is especially true for the robotic industry since collaboration between humans and robots is an essential part of the human robot paradigm.
Where Does Computer Simulation Come into Play?
Some factors influence the possibility for robots and humans to work together and collaborate efficiently. One of the top priorities or factors that affect this collaboration is human safety. During the operation, development, or testing of this concept of computer simulation of human robots collaboration, human safety is a top priority and should never be compromised. For this, various safeguards or failsafe mechanisms, power limiting restrictions, tools to monitor for possible errors, and proper fallback plans can be helpful.
Alongside this, robots that are in use must be aware of their surroundings and environment. At the very least, the use case of the robot must reflect its awareness and capabilities. Furthermore, robots also must control and change their actions as per real-time feedback and happenings in their surroundings. Thus, it presents the robot research and development industry with another challenge of autonomy and the ability of robots to perceive their surroundings or environments efficiently.
Read more: How Are Industries Creating New Opportunities By Combining Simulations and AI
Conversely, bidirectional communication among robots and humans may open the door to fulfilling all the requirements necessary for a safe and effective human robot collaboration. But achieving such a feat is also not possible without proper testing and massive investments of time, resources, and money.
Computer Simulations can solve all these problems and complexities with efficient and elegant solutions. Computer simulation technology provides a modeling system to visualize any complex system, even 3D digital space. For example, a robot consists of joints, motors, arms, actuators, sensors, links, controllers, and other mechanical and electronic components like a battery, processing unit, and networking interfaces. All these components and elements can be costly when they reach the level of sophistication a robot requires. Alongside this, integrating these components into a complete robotic system in which these components work together efficiently as a whole system is also a very complex and expensive task to accomplish. Nevertheless, this is where computer simulations come into play.
The advancement in computer simulation technology now allows for the simulation of all these components and elements in a fully functional robot. Alongside this, computer simulation software can also simulate various environments and conditions under which a robot may operate. Much like a natural environment, a simulation environment allows for multiple experiments, tests, and evaluation of a robot, except it, is without all the costs and risks present when testing the robot in the real world. Computer simulations also enable monitoring and assessing robots with a very high level of sophistication in virtually any environment or condition possible.
Why is Computer Simulation of Human Robots Collaboration Important?
The human robot collaboration is essential for the factories of the future and all the possibilities that follow. In a space where robots and humans can work together efficiently to complete different tasks, endless opportunities emerge. For example, robots allow us to perform precarious and dangerous jobs that require massive strength or skill, along with repetitive or requiring extra precision. Meanwhile, some jobs require human intervention due to either being too expensive or complex to automate and jobs that require critical thinking and human intelligence. Thus, it constructively allows industries to utilize the best of both worlds efficiently.
For instance, risky jobs like mining, exploration of unknown borders and areas, repetitive assignments, lifting heavy loads, etc., have more practical industry use cases for robot in the field, but they also require human intervention. Similarly, jobs that require extra precision, like in surgery, may be more suited for robots. Still, due to a lack of intelligence and critical thinking, it is currently unable to do so. Likewise, human intervention is essential in search and rescue operations, but it also requires scanning large and potentially unsafe environments that are more suited for robots or drones. Alongside this, all factories and manufacturing industries cannot generally use robots due to either being too expensive to automate the job or too complex for robots to perform. Hence, human resources are used in various factories and manufacturing sites, albeit the factory and manufacturing sites are dangerous and unsafe.
These difficulties are easily removable if computer simulation of human robots collaboration becomes very efficient and easy to realize. Moreover, if such cooperation becomes possible to achieve, one can reap potential benefits from both worlds. For instance, robot developers in health care organizations can utilize the precision of a robot and the critical thinking of a surgeon to develop a surgical robot to perform complex surgeries on patients.
Read more: Simulation in Digital Twin for Aerospace, Manufacturing, and Robotics
Consequently, a collaboration between humans and robots that enables an open environment where humans and robots can work together to complete works with integration of benefits from both worlds is a very lucrative goal to achieve. Computer simulation opens the door to such a goal. Due to the numerous advantages computer simulations possess, various industries develop human robot collaboration systems.
Generally, robot development in computer simulation software starts with designing and prototyping the robot. It requires a massive amount of resources, cost, time, and multidisciplinary skills in the real world. Then, each prototype comes to its testing, assessment, and redesign of the system according to the evaluations and results. It also requires equally if not more massive amounts of resources, cost, time, and skills in the real world. For a complete robot consisting of all its features and functionalities and compliance with all the factors discussed above, this process of prototyping, redesign, and testing has to be repeated numerous times until the evaluation and results are entirely within acceptable terms.
However, with the help of computer simulations, all these processes become redundant. When robot development with computer simulations occurs, developers/manufacturers get a digital platform to perform rapid prototyping with testing, modeling, redesigning, and programming all within the simulation. With the help of the computer simulation, developers can design a robot with all the parts and components right from the start to get a robot model. This model can go through various experiments, evaluations, and assessments to ensure formal requirements compliance. If not, developers can make changes or even redesign the robot entirely without much effort since it's in a digital form.
Not only this enables rapid prototyping and development, it ensures that developers do not exhaust all their time worrying about resources or costs but utilize that time for better ideas and models. It also opens the door for creative minds to flourish and experiment with various designs and configurations of robots. Furthermore, since the initial design process starts with a digital model, developers can tweak, organize and play with different formats. Finally, it will ensure that the design phase outputs the team's accurate designs with an efficient and agile developmental process.
Moreover, testing and evaluation of robots in different environments is also possible with error reporting and monitoring systems working together to gather essential data. It ensures that all unexpected problems or errors that the developers may encounter during the physical build of the robot are taken care of and solved. Testing with trajectory planning, verifying algorithm operation and efficiency, verifying the integrity of the design, and overall working of the robot can all be done in simulations. Testing various fluid mechanisms, aerodynamics, mechanical integrity, and kinetic forces with realistic physics engines is also possible.
One of the most vital computer simulation of human robots collaboration is human safety. Simulations enable testing for human safety and protection in numerous conditions and environments. We can quickly test and examine communications, control, and safety mechanics inside computer simulations without ever having to put a human at risk. With technologies like Augmented Reality (AR), Virtual Reality (VR), and intelligent AI systems, humans can test these robots with immersive experiences in realistic environments without taking risks.
It will rapidly evolve the development of human robot collaboration with the power of rapid prototyping, innovative product development systems, and efficient R&D technology. Furthermore, with Industry 4.0 gradually moving from embedded systems towards the digital transformation of the industries, simulations can open the door to new ways of development and enhance the much sought-perfect cyber-physical system (CPS).
With the advent of computer simulations, robot development and research is moving away from machines with no or low-level intelligence towards a more autonomous, adaptable, flexible, and re-configurable system that can work efficiently with humans. With computer simulations, human collaboration with intelligent robots will be possible across various industries where the whole collaborative system will be efficient, sustainable, effective, and safe. And our approach of creating the computer simulation of human robots collaboration will be completed.