What Does Nvidia and Open Robotics Partnership Mean For The Future Of Robotics

The chip giant NVIDIA and Open Robotics partnership may mark a significant stride in the robotics and Artificial Intelligence industry.

NVIDIA is one of the most potent entities for chips manufacturing and computer systems, along with Open Robotics being a giant in the robotics space. This partnership brings these two giants together to develop and enhance Robot Operating System 2 (ROS 2).

As put forth by Chief Executive of Open Robotics, Brian Gerkey, users of the ROS platform were using NVIDIA hardware for years for both building and simulating robots. So the partnership aims to ensure that ROS2 and Ignition will work perfectly with these devices and platforms.

ROS is not a new technology. From its inception in 2010, ROS has been a vital source of the developmental platform for the robotics industry. Also supported by various big names like DARPA and NASA, ROS is an open-source technology that combines a set of software libraries, tools, and utilities for building and testing robot applications. ROS2 is the new version with many improvements upon the old ROS and was announced back in 2014.

However, Open Robots’ Ignition simulation environment primarily focused and targeted the traditional CPU computing modes over these years. Conversely, on the other hand, NVIDIA was pioneering and developing AI computing and IoT technology with edge applications in their Jetson Platform and SDKs (Software Development Kits) like Isaac for robotics, NVIDIA toolkits like Train, Adapt, and Optimize (TAO). All this simplifies AI development and deployment of AI models drastically.

Read more: Are You Still Manually Teaching Robots?

NVIDIA was also working on Omniverse Isaac Sim for synthetic generation of virtual data and simulation of robots. Jetson platforms are open source and are available to developers. But now, with its combination with the Omniverse Issac Sim, developers will be able to develop physical robots and train them using the synthetic data simultaneously.

The NVIDIA and Open Robotics partnership majorly focus on the ROS2 platform, and it’s boosting its performance on the NVIDIA Jetson edge AI and its GPU-based platforms. The partnership primarily aims to reduce development time and performance on various platforms for developers looking to integrate technologies like computer vision and Artificial Intelligence (AI) and Machine Learning (ML), and deep learning into their various ROS applications.

Open Robotics will improve data flow, management, efficiency, and shared memory usage across GPUs and other processing units through this partnership. This improvement will primarily happen on the Jetson edge AI platform from NVIDIA.

This Jetson Edge platform is an AI computing platform and is mainly a supercomputer-based platform. Furthermore, Isaac Sim, a scalable simulation application for robotics, will also be interoperable with ROS1 and ROS2 from Open Robotics.

nvidia and open robotics partnership

The NVIDIA and Open Robotics partnership will work on ROS to improve data flow in various NVIDIA processing units like CPU, GPU, Tensor Cores, and NVDLA present in the Jetson AI hardware from NVIDIA. It will also focus on improving the developer experience for the robotics community by extending the already available open-source software.

This partnership will also aim that the developers on the ROS platform will be able to shift their robotic simulation technology between Isaac Sim from NVIDIA and  Ignition Gazebo from Open Robotics. It will enable these developers to run even more large-scale simulations with the enablement of even more possibilities. As put by the CEO of Open Robotics, Operian Gerkey, “As more ROS developers leverage hardware platforms that contain additional compute capabilities designed to offload the host CPU, ROS is evolving to make it easier to take advantage of these advanced hardware resources efficiently.”

It implies that developers will openly leverage processing power from different hardware platforms with more powerful, low-power, and efficient hardware resources. So, for example, ROS can now directly interface with NVIDIA hardware and take its maximum advantage, which was hard to do before.

The NVIDIA and Open Robotics partnership also put forward possibilities of results to come out around 2022. With a heavy investment of NVIDIA towards computer hardware, modern robotics can now utilize this hardware for enhanced capabilities and more heavy AI workloads. Furthermore, with NVIDIA's expertise in inefficient data flow in hardware like GPU, the robotics industry can now utilize this efficiency to flow large amounts of data from its sensors and process them more effectively.

Read more: Robot Programming Platform Conquers Complex Parts and Outperforms the Competition

Gerkey further explained that the reason for working with NVIDIA and their Jetson Platform specifically was due to NVIDIA’s rich experience with modern hardware relevant to modern robotic applications and efficient AI workloads. The head of Product Management, Murali Gopal Krishna, also explained that NVIDIA’s GPU accelerated platform is at the core of AI development and robot applications. However, most of these applications and development are happening due to ROS. Hence it’s very logical to work directly with Open Robotics to improve this.

This NVIDIA and Open Robotics partnership also brought some new hardware-accelerated packages for ROS 2, aiming to replace code that would otherwise run on the CPU, with Isaac GEM from NVIDIA. These latest Issac GEM packages will handle stereo imaging and color space conversion, correction for lens distortion, and processing of AprilTags and their detection. These new Issac GEMs are already available on the GitHub repository of Nvidia. But it will not include interoperability between Isaac Sim from NVIDIA and  Ignition Gazebo from Open Robotics as per expectations of it arriving in 2022.

Meanwhile, though, the developers can explore and experiment with what's already available. The simulator on GitHub already has a bridge for ROS version 1 and ROS version 2. It also has examples of using popular ROS packages for navigation and manipulation through boxes nav2 and MoveIT. While many of these developers are already using Isaac Sim to generate synthetic data for training perception stacks in their robots.

This latest version of the Isaac Sim brings significant support for the ROS developers. Along with Nav2 and MoveIT support, the new Isaac Sim includes support for ROS in ROS April Tag, Stereo camera, TurtleBot3 Sample, ROS services, Native Python ROS support and usage, and even the ROS manipulation and camera sample.

This wide range of support will enable developers from different domains and fields to work efficiently in robotics. For example, developers will quickly work on domain-specific data from hospitals, agriculture, or stores. The resultant tools and support released from the Nvidia and Open Robotics partnership will enable developers to use these data and augment them in the real world for training robots. As Gopala Krishna put it, ”they can use that data, our tools and supplement that with real-world data to build robust, scalable models in photo-realistic environments that obey the laws of physics.” He claimed with the remark that Nvidia would also release pre-trained models.

On the remark about performance uplift in these perception stacks, Gopala Krishna said, “The amount of performance gain will vary depending on how much inherent parallelism exists in a given workload. But we can say that we see an order of magnitude increase in performance for perception and AI-related workloads.” Nvidia’s Gopala Krishna also remarked that the program would increase performance and much better power efficiency with appropriate processor use for an acceleration of different tasks.

Gopala Krishna also noted that Nvidia is working closely with Open Robotics to streamline the ROS framework for hard accelerations. The framework will also see multiple new releases of its hardware-accelerated software package, Isaac GEM. Some of these releases will focus on robotics perception, while further support for more sensors and hardware will arrive on the simulation technology side. The release will also contain samples that are relevant to the ROS community.

This development will aid the growing market of robotics. Especially after the COVID, the growth of the robotic market seems to skyrocket, with more and more industries and companies lining up to use and adopt robotics, from manufacturing and production lines to health care and agriculture usage.

nvidia and open robotics partnership

Nvidia and Open Robotics partnership will see the advancement of AI and technologies like Machine Learning and Deep Learning at a rapid pace now with the support of NVIDIA hardware in robotics. Researchers estimate that the global robotics market will cross 210 Billion US Dollars. This estimate is likely to increase with the rapid development of AI and technologies like semiconductor technology, sensors, networking technology with 5G.

This collaboration between Nvidia and Open Robotics will only add valuation to this market with innovative platforms like Nvidia Isaac and ROC, helping developers develop more efficient, robust, and innovative robots and robotic applications.

It will also help the open-source community of robot development since this partnership brings together two of the most significant robotics development communities with ROC and Nvidia Isaac. Furthermore, FS Studio collaborates with this growing community to release its robotic simulation solution, ZeroSim, alongside the Nvidia and Open Robotics partnership. Thus, it will help the development bring together with collaboration and push the robotic development further. Now with the dawn of Industry 4.0, companies are moving towards digital technology. This movement can be seen with industries adopting digital solutions with robotics in different fields from production and manufacturing to the board paradigm of human-robot collaboration possibilities.

You may also like:

Leave a Reply

Your email address will not be published. Required fields are marked *